BiGNN: Bipartite graph neural network with attention mechanism for solving multiple traveling salesman problems in urban logistics

•Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation Vol. 129; p. 103863
Main Authors: Liang, Haojian, Wang, Shaohua, Li, Huilai, Zhou, Liang, Zhang, Xueyan, Wang, Shaowen
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2024
Elsevier
Subjects:
ISSN:1569-8432, 1872-826X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning algorithms.•Real-World Application: The method is used to solve the Surat Road network data. The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones.
AbstractList •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning algorithms.•Real-World Application: The method is used to solve the Surat Road network data. The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones.
The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones.
ArticleNumber 103863
Author Li, Huilai
Liang, Haojian
Zhou, Liang
Wang, Shaohua
Zhang, Xueyan
Wang, Shaowen
Author_xml – sequence: 1
  givenname: Haojian
  surname: Liang
  fullname: Liang, Haojian
  organization: Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 2
  givenname: Shaohua
  orcidid: 0000-0001-8651-9505
  surname: Wang
  fullname: Wang, Shaohua
  email: wangshaohua@aircas.ac.cn
  organization: Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 3
  givenname: Huilai
  surname: Li
  fullname: Li, Huilai
  organization: School of Artificial Intelligence, Jilin University, Changchun 130012, China
– sequence: 4
  givenname: Liang
  surname: Zhou
  fullname: Zhou, Liang
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 5
  givenname: Xueyan
  surname: Zhang
  fullname: Zhang, Xueyan
  organization: Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
– sequence: 6
  givenname: Shaowen
  surname: Wang
  fullname: Wang, Shaowen
  email: shaowen@illinois.edu
  organization: CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois Urbana-Champaign, 1301 W Green St, Urbana, IL, 61801, USA
BookMark eNp9UU1v1TAQjFCRaAs_gJuPXPKwnS8HTrQqpVJVLiBxs5zNJs_BsYPtvIorvxyHIA4cetrd0c6sduYiO7POYpa9ZvTAKKvfTodJjQdOeZnmQtTFs-yciYbngtffzlJf1W0uyoK_yC5CmChlTVOL8-zXlb59eHhHrvSifNQRyejVciQWV69MKvHR-e_kUccjUTGijdpZMiMcldVhJoPzJDhz0nYk82qiXgyS6NUJzQYFZTDMypLFu87gHIi2ZPVdQowbdYgawsvs-aBMwFd_62X29ePNl-tP-f3n27vrD_c5lEUb855D0YmOoqrbChpA1fGeV0oAE6yigvZtT0Vb9SVlICrWqUpUBQBnDJpOQHGZ3e26vVOTXLyelf8pndLyD-D8KDcLwKDEHpoBWsrZIMqOlqLqUBVNPdCu5m2JSevNrpX--rFiiHLWAdAYZdGtQRac1imMllZple2r4F0IHod_pxmVW3Zykik7uWUn9-wSp_mPAzqqzfpkrTZPMt_vTExOnjR6GUCjBey1R4jpVf0E-zezGbhK
CitedBy_id crossref_primary_10_1080_13658816_2024_2413394
crossref_primary_10_3389_fenrg_2025_1596471
crossref_primary_10_12677_orf_2025_152085
crossref_primary_10_1109_ACCESS_2024_3486686
Cites_doi 10.1016/j.knosys.2020.106244
10.1049/iet-its.2019.0873
10.1016/j.ejor.2005.04.027
10.1109/TCYB.2021.3049635
10.1287/mnsc.16.6.B373
10.1109/TCYB.2019.2955599
10.1109/TCYB.2016.2647440
10.1287/ijoc.2016.0723
10.1109/TITS.2020.3000761
10.1109/TCYB.2020.2981385
10.1016/j.neucom.2022.11.024
10.1016/j.ejor.2022.11.010
10.1145/3377000.3377002
10.1111/j.1540-5915.1992.tb00387.x
10.1080/17538947.2023.2299211
10.1016/j.asoc.2018.11.048
10.1016/j.omega.2004.10.004
10.1109/TCYB.2015.2418737
10.1109/ACCESS.2020.3000501
10.1145/321043.321046
10.1080/13658816.2019.1684500
10.1109/IJCNN.2003.1223777
10.1016/j.cor.2023.106455
10.1109/TCYB.2015.2409837
10.1287/mnsc.19.7.790
10.3390/ijgi6110321
10.1287/mnsc.18.6.B279
10.1016/j.neucom.2021.01.067
10.1109/WSC.1998.745084
10.1109/IPMM.1999.791495
10.1016/S0377-2217(99)00380-X
10.1109/TCYB.2014.2371918
10.1016/S0305-0548(98)00069-0
10.1609/aaai.v30i1.10080
10.1007/BF00204755
10.1007/s11750-017-0451-6
10.1016/S0360-8352(97)00171-X
10.1109/TCYB.2016.2607220
10.1007/978-3-319-19644-2_22
10.1016/0305-0483(88)90047-3
10.1016/S0019-9958(78)90197-3
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2024.103863
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_edc7fc9021f84b0485bea376f0b6294e
10_1016_j_jag_2024_103863
S1569843224002176
GroupedDBID 0SF
29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
CITATION
EFJIC
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c439t-d2c3b8b0ea695c7ceab2d25a8c1815080d9d0895d401c851ba5853cc211c7b8c3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234648200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Fri Oct 03 12:38:02 EDT 2025
Thu Oct 02 22:51:37 EDT 2025
Sat Nov 29 03:32:47 EST 2025
Tue Nov 18 22:10:32 EST 2025
Sat Jun 01 15:42:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Branch-and-bound
Bipartite graph
Multiple traveling salesman problem
Graph neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-d2c3b8b0ea695c7ceab2d25a8c1815080d9d0895d401c851ba5853cc211c7b8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8651-9505
OpenAccessLink https://doaj.org/article/edc7fc9021f84b0485bea376f0b6294e
PQID 3206202905
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_edc7fc9021f84b0485bea376f0b6294e
proquest_miscellaneous_3206202905
crossref_primary_10_1016_j_jag_2024_103863
crossref_citationtrail_10_1016_j_jag_2024_103863
elsevier_sciencedirect_doi_10_1016_j_jag_2024_103863
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Brumitt, Stentz (b0030) 1996; Vol. 3
Lu, Yue (b0160) 2019; 76
Shi, Sun, Zhang, Ye (b0210) 2020; 52
Gao, Li, Rao, Mai, Prestby, Marks, Hu (b0060) 2021
Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Proceedings of the International Joint Conference on Neural Networks, 2003. (Vol. 3, pp. 2340-2343). IEEE.
Torki, Somhon, Enkawa (b0235) 1997; 33
Gupta, Gasse, Khalil, Mudigonda, Lodi, Bengio (b0090) 2020; 33
Hu, Gao, Lunga, Li, Newsam, Bhaduri (b0110) 2019; 11
Liu, Gao, Qiu, Liu, Yan, Lu (b0150) 2017; 6
Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.
Lodi, Zarpellon (b0155) 2017; 25
Niendorf, Girard (b0185) 2017; 48
Gorenstein (b0080) 1970; 16
Zhang, T., Gruver, W. A., & Smith, M. H. (1999, July). Team scheduling by genetic search. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296) (Vol. 2, pp. 839-844). IEEE.
Alvarez, Louveaux, Wehenkel (b0005) 2017; 29
(pp. 257-268). Springer International Publishing.
Wang, Zhou, Wang, Zhang, Chen, Zheng (b0260) 2015; 46
Tang, Liu, Rong, Yang (b0230) 2000; 124
Zhang, Chen, Guo, Li (b0270) 2020; 14
Russell, Li, Wang (b0200) 2023; 124
Janowicz, Gao, McKenzie, Hu, Bhaduri (b0125) 2020; 34
Somhom, Modares, Enkawa (b0215) 1999; 26
Zhang, Liu, Li, Zhen, Yuan, Li, Yan (b0280) 2023; 519
Wang, Ma, Li, Zhai, Qiao (b0255) 2020; 8
Zhang, Chen, Cui, Guo, Zhu (b0265) 2020; 22
Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28.
Carter, Ragsdale (b0040) 2006; 175
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W. K., Eifler, L., Gasse, M., ... & Witzig, J. (2020). The SCIP optimization suite 7.0.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (b0240) 2017; 30
Ibaraki (b0120) 1978; 36
Bektas (b0020) 2006; 34
Miller, Tucker, Zemlin (b0175) 1960; 7
Zhou, Cao (b0290) 2023; 122
Gao, Zhou, Xu, Lan, Xiao (b0065) 2023
He, Hao (bib291) 2023; 307
He, Daume, Eisner (b0100) 2014
Niendorf, Kabamba, Girard (b0190) 2015; 46
Li, Zhou, Sun, Dai, Yu (b0140) 2014; 45
Necula, R., Breaban, M., & Raschip, M. (2015). Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In
Mahmoudinazlou, Kwon (bib292) 2024; 162
Angel, Caudle, Noonan, Whinston (b0010) 1972; 18
Gasse, Chételat, Ferroni, Charlin, Lodi (b0070) 2019
Hosseinabadi, Kardgar, Shojafar, Shamshirband, Abraham (b0105) 2014
Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2019). Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936.
Svestka, Huckfeldt (b0225) 1973; 19
Zhong (b0285) 2022; 47
Gui, Sun, Yang, Peng, Li, Wu, Gong (b0085) 2021; 440
Wacholder, Han, Mann (b0250) 1989; 61
Liang, Wang, Li, Zhou, Chen, Zhang, Chen (b0145) 2024; 17
Hansknecht, C., Joormann, I., & Stiller, S. (2018). Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415.
Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed integer programming. In
Okonjo-Adigwe (b0195) 1988; 16
Ryan, J. L., Bailey, T. G., Moore, J. T., & Carlton, W. B. (1998, December). Reactive tabu search in unmanned aerial reconnaissance simulations. In 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274) (Vol. 1, pp. 873-879). IEEE.
Kaempfer Y, Wolf L. Learning the multiple traveling salesmen problem with permutation invariant pooling networks[J]. arXiv preprint arXiv:1803.09621, 2018.
(Vol. 30, No. 1).
Duan, He, Yen (b0045) 2021; 52
Lupoaie, Chili, Breaban, Raschip (b0165) 2019
Hu, Yao, Lee (b0115) 2020; 204
Gilbert, Hofstra (b0075) 1992; 23
Azad, Islam, Chakraborty (b0015) 2017; 47
Feng, Zhou, Gupta, Zhong, Zhu, Tan, Qin (b0050) 2019; 51
He (10.1016/j.jag.2024.103863_b0100) 2014
Torki (10.1016/j.jag.2024.103863_b0235) 1997; 33
Niendorf (10.1016/j.jag.2024.103863_b0190) 2015; 46
Shi (10.1016/j.jag.2024.103863_b0210) 2020; 52
10.1016/j.jag.2024.103863_b0095
10.1016/j.jag.2024.103863_b0130
Duan (10.1016/j.jag.2024.103863_b0045) 2021; 52
Li (10.1016/j.jag.2024.103863_b0140) 2014; 45
Somhom (10.1016/j.jag.2024.103863_b0215) 1999; 26
10.1016/j.jag.2024.103863_b0055
Niendorf (10.1016/j.jag.2024.103863_b0185) 2017; 48
Janowicz (10.1016/j.jag.2024.103863_b0125) 2020; 34
Gasse (10.1016/j.jag.2024.103863_b0070) 2019
Hu (10.1016/j.jag.2024.103863_b0115) 2020; 204
Zhang (10.1016/j.jag.2024.103863_b0270) 2020; 14
Ibaraki (10.1016/j.jag.2024.103863_b0120) 1978; 36
10.1016/j.jag.2024.103863_b0170
Liu (10.1016/j.jag.2024.103863_b0150) 2017; 6
Russell (10.1016/j.jag.2024.103863_b0200) 2023; 124
Zhong (10.1016/j.jag.2024.103863_b0285) 2022; 47
10.1016/j.jag.2024.103863_b0205
Azad (10.1016/j.jag.2024.103863_b0015) 2017; 47
Gorenstein (10.1016/j.jag.2024.103863_b0080) 1970; 16
Gao (10.1016/j.jag.2024.103863_b0060) 2021
Gupta (10.1016/j.jag.2024.103863_b0090) 2020; 33
Brumitt (10.1016/j.jag.2024.103863_b0030) 1996; Vol. 3
10.1016/j.jag.2024.103863_b0245
Vaswani (10.1016/j.jag.2024.103863_b0240) 2017; 30
Angel (10.1016/j.jag.2024.103863_b0010) 1972; 18
Miller (10.1016/j.jag.2024.103863_b0175) 1960; 7
Zhou (10.1016/j.jag.2024.103863_b0290) 2023; 122
Svestka (10.1016/j.jag.2024.103863_b0225) 1973; 19
Carter (10.1016/j.jag.2024.103863_b0040) 2006; 175
Gilbert (10.1016/j.jag.2024.103863_b0075) 1992; 23
Lupoaie (10.1016/j.jag.2024.103863_b0165) 2019
Hu (10.1016/j.jag.2024.103863_b0110) 2019; 11
Lodi (10.1016/j.jag.2024.103863_b0155) 2017; 25
10.1016/j.jag.2024.103863_b0275
Wang (10.1016/j.jag.2024.103863_b0260) 2015; 46
Tang (10.1016/j.jag.2024.103863_b0230) 2000; 124
Liang (10.1016/j.jag.2024.103863_b0145) 2024; 17
10.1016/j.jag.2024.103863_bib293
Zhang (10.1016/j.jag.2024.103863_b0265) 2020; 22
Bektas (10.1016/j.jag.2024.103863_b0020) 2006; 34
Alvarez (10.1016/j.jag.2024.103863_b0005) 2017; 29
Gui (10.1016/j.jag.2024.103863_b0085) 2021; 440
Lu (10.1016/j.jag.2024.103863_b0160) 2019; 76
Zhang (10.1016/j.jag.2024.103863_b0280) 2023; 519
Feng (10.1016/j.jag.2024.103863_b0050) 2019; 51
Gao (10.1016/j.jag.2024.103863_b0065) 2023
He (10.1016/j.jag.2024.103863_bib291) 2023; 307
10.1016/j.jag.2024.103863_b0220
10.1016/j.jag.2024.103863_b0025
Wang (10.1016/j.jag.2024.103863_b0255) 2020; 8
10.1016/j.jag.2024.103863_b0180
Mahmoudinazlou (10.1016/j.jag.2024.103863_bib292) 2024; 162
Hosseinabadi (10.1016/j.jag.2024.103863_b0105) 2014
Okonjo-Adigwe (10.1016/j.jag.2024.103863_b0195) 1988; 16
Wacholder (10.1016/j.jag.2024.103863_b0250) 1989; 61
References_xml – reference: Zhang, T., Gruver, W. A., & Smith, M. H. (1999, July). Team scheduling by genetic search. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296) (Vol. 2, pp. 839-844). IEEE.
– volume: 45
  start-page: 2390
  year: 2014
  end-page: 2401
  ident: b0140
  article-title: Colored traveling salesman problem
  publication-title: IEEE Trans. Cybern.
– year: 2023
  ident: b0065
  article-title: AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 124
  year: 2023
  ident: b0200
  article-title: Equalizing urban agriculture access in Glasgow: A spatial optimization approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 16
  start-page: B-373
  year: 1970
  ident: b0080
  article-title: Printing press scheduling for multi-edition periodicals
  publication-title: Manag. Sci.
– volume: Vol. 3
  start-page: 2396
  year: 1996
  end-page: 2401
  ident: b0030
  publication-title: April). Dynamic Mission Planning for Multiple Mobile Robots
– volume: 48
  start-page: 583
  year: 2017
  end-page: 595
  ident: b0185
  article-title: Exact and approximate stability of solutions to traveling salesman problems
  publication-title: IEEE Trans. Cybern.
– volume: 17
  start-page: 2299211
  year: 2024
  ident: b0145
  article-title: Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis
  publication-title: Int. J. Digital Earth
– reference: Kaempfer Y, Wolf L. Learning the multiple traveling salesmen problem with permutation invariant pooling networks[J]. arXiv preprint arXiv:1803.09621, 2018.
– reference: Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.
– volume: 11
  start-page: 5
  year: 2019
  end-page: 15
  ident: b0110
  article-title: GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions
  publication-title: Sigspatial Special
– volume: 22
  start-page: 7004
  year: 2020
  end-page: 7014
  ident: b0265
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 47
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: b0015
  article-title: A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations
  publication-title: IEEE Trans. Cybern.
– volume: 36
  start-page: 1
  year: 1978
  end-page: 27
  ident: b0120
  article-title: Branch-and-bound procedure and state—space representation of combinatorial optimization problems
  publication-title: Inf. Control
– volume: 14
  start-page: 1210
  year: 2020
  end-page: 1217
  ident: b0270
  article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit
  publication-title: IET Intel. Transport Syst.
– volume: 52
  start-page: 495
  year: 2020
  end-page: 507
  ident: b0210
  article-title: Homotopic convex transformation: A new landscape smoothing method for the traveling salesman problem
  publication-title: IEEE Trans. Cybern.
– start-page: 73
  year: 2019
  end-page: 80
  ident: b0165
  article-title: SOM-guided evolutionary search for solving MinMax multiple-TSP
  publication-title: In 2019 IEEE Congress on Evolutionary Computation (CEC)
– volume: 7
  start-page: 326
  year: 1960
  end-page: 329
  ident: b0175
  article-title: Integer programming formulation of traveling salesman problems
  publication-title: Journal of the ACM (JACM)
– volume: 33
  start-page: 473
  year: 1997
  end-page: 476
  ident: b0235
  article-title: A competitive neural network algorithm for solving vehicle routing problem
  publication-title: Comput. Ind. Eng.
– volume: 23
  start-page: 250
  year: 1992
  end-page: 259
  ident: b0075
  article-title: A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem
  publication-title: Decis. Sci.
– volume: 30
  year: 2017
  ident: b0240
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 175
  start-page: 246
  year: 2006
  end-page: 257
  ident: b0040
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: Eur. J. Oper. Res.
– reference: (pp. 257-268). Springer International Publishing.
– start-page: 261
  year: 2021
  end-page: 283
  ident: b0060
  article-title: Automatic urban road network extraction from massive GPS trajectories of taxis
  publication-title: Handbook of Big Geospatial Data
– reference: Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28.
– volume: 204
  year: 2020
  ident: b0115
  article-title: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs
  publication-title: Knowl.-Based Syst.
– volume: 16
  start-page: 159
  year: 1988
  end-page: 163
  ident: b0195
  article-title: An effective method of balancing the workload amongst salesmen
  publication-title: Omega
– volume: 47
  start-page: 1988
  year: 2022
  end-page: 2002
  ident: b0285
  article-title: Deep Mapping—A Critical Engagement of Cartography with Neuroscience[J]
  publication-title: Geomatics and Information Science of Wuhan University
– volume: 162
  start-page: 106455.MLA
  year: 2024
  ident: bib292
  article-title: A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem[J]
  publication-title: Computers & Operations Research
– volume: 29
  start-page: 185
  year: 2017
  end-page: 195
  ident: b0005
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS J. Comput.
– volume: 440
  start-page: 72
  year: 2021
  end-page: 88
  ident: b0085
  article-title: LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points
  publication-title: Neurocomputing
– reference: Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed integer programming. In
– volume: 25
  start-page: 207
  year: 2017
  end-page: 236
  ident: b0155
  article-title: On learning and branching: a survey
  publication-title: TOP
– reference: (Vol. 30, No. 1).
– reference: Ryan, J. L., Bailey, T. G., Moore, J. T., & Carlton, W. B. (1998, December). Reactive tabu search in unmanned aerial reconnaissance simulations. In 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274) (Vol. 1, pp. 873-879). IEEE.
– volume: 34
  start-page: 209
  year: 2006
  end-page: 219
  ident: b0020
  article-title: The multiple traveling salesman problem: an overview of formulations and solution procedures
  publication-title: Omega
– reference: Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Proceedings of the International Joint Conference on Neural Networks, 2003. (Vol. 3, pp. 2340-2343). IEEE.
– volume: 122
  year: 2023
  ident: b0290
  article-title: Spatial multi-objective optimization of institutional elderly-care facilities: A case study in Shanghai
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W. K., Eifler, L., Gasse, M., ... & Witzig, J. (2020). The SCIP optimization suite 7.0.
– volume: 46
  start-page: 582
  year: 2015
  end-page: 594
  ident: b0260
  article-title: Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances, and algorithms
  publication-title: IEEE Trans. Cybern.
– start-page: 32
  year: 2019
  ident: b0070
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 51
  start-page: 3171
  year: 2019
  end-page: 3184
  ident: b0050
  article-title: Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: B-279
  year: 1972
  ident: b0010
  article-title: Computer-assisted school bus scheduling
  publication-title: Manag. Sci.
– reference: Necula, R., Breaban, M., & Raschip, M. (2015). Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In
– volume: 124
  start-page: 267
  year: 2000
  end-page: 282
  ident: b0230
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex
  publication-title: Eur. J. Oper. Res.
– volume: 8
  start-page: 106872
  year: 2020
  end-page: 106879
  ident: b0255
  article-title: Ant colony optimization with an improved pheromone model for solving MTSP with capacity and time window constraint
  publication-title: IEEE Access
– volume: 46
  start-page: 973
  year: 2015
  end-page: 985
  ident: b0190
  article-title: Stability of solutions to classes of traveling salesman problems
  publication-title: IEEE Trans. Cybern.
– start-page: 27
  year: 2014
  ident: b0100
  article-title: Learning to search in branch and bound algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 76
  start-page: 436
  year: 2019
  end-page: 444
  ident: b0160
  article-title: Mission-oriented ant-team ACO for min–max MTSP
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 625
  year: 2020
  end-page: 636
  ident: b0125
  article-title: GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 33
  start-page: 18087
  year: 2020
  end-page: 18097
  ident: b0090
  article-title: Hybrid models for learning to branch
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 26
  start-page: 395
  year: 1999
  end-page: 407
  ident: b0215
  article-title: Competition-based neural network for the multiple travelling salesmen problem with MinMax objective
  publication-title: Comput. Oper. Res.
– volume: 19
  start-page: 790
  year: 1973
  end-page: 799
  ident: b0225
  article-title: Computational experience with an m-salesman traveling salesman algorithm
  publication-title: Manag. Sci.
– volume: 307
  start-page: 1055
  year: 2023
  end-page: 1070
  ident: bib291
  article-title: Memetic search for the minmax multiple traveling salesman problem with single and multiple depots
  publication-title: European Journal of Operational Research
– volume: 52
  start-page: 8300
  year: 2021
  end-page: 8314
  ident: b0045
  article-title: Robust multiobjective optimization for vehicle routing problem with time windows
  publication-title: IEEE Trans. Cybern.
– reference: Hansknecht, C., Joormann, I., & Stiller, S. (2018). Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415.
– volume: 61
  start-page: 11
  year: 1989
  end-page: 19
  ident: b0250
  article-title: A neural network algorithm for the multiple traveling salesmen problem
  publication-title: Biol. Cybern.
– start-page: 76
  year: 2014
  end-page: 81
  ident: b0105
  publication-title: November). GELS-GA: Hybrid Metaheuristic Algorithm for Solving Multiple Travelling Salesman Problem
– volume: 519
  start-page: 205
  year: 2023
  end-page: 217
  ident: b0280
  article-title: A survey for solving mixed integer programming via machine learning
  publication-title: Neurocomputing
– reference: Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2019). Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936.
– volume: 6
  start-page: 321
  year: 2017
  ident: b0150
  article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 204
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0115
  article-title: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106244
– volume: 47
  start-page: 1988
  issue: 12
  year: 2022
  ident: 10.1016/j.jag.2024.103863_b0285
  article-title: Deep Mapping—A Critical Engagement of Cartography with Neuroscience[J]
  publication-title: Geomatics and Information Science of Wuhan University
– start-page: 32
  year: 2019
  ident: 10.1016/j.jag.2024.103863_b0070
  article-title: Exact combinatorial optimization with graph convolutional neural networks
– volume: 14
  start-page: 1210
  issue: 10
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0270
  article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit
  publication-title: IET Intel. Transport Syst.
  doi: 10.1049/iet-its.2019.0873
– start-page: 73
  year: 2019
  ident: 10.1016/j.jag.2024.103863_b0165
  article-title: SOM-guided evolutionary search for solving MinMax multiple-TSP
– volume: 175
  start-page: 246
  issue: 1
  year: 2006
  ident: 10.1016/j.jag.2024.103863_b0040
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.04.027
– volume: 52
  start-page: 8300
  issue: 8
  year: 2021
  ident: 10.1016/j.jag.2024.103863_b0045
  article-title: Robust multiobjective optimization for vehicle routing problem with time windows
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3049635
– volume: 16
  start-page: B-373
  issue: 6
  year: 1970
  ident: 10.1016/j.jag.2024.103863_b0080
  article-title: Printing press scheduling for multi-edition periodicals
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.16.6.B373
– start-page: 27
  year: 2014
  ident: 10.1016/j.jag.2024.103863_b0100
  article-title: Learning to search in branch and bound algorithms
– volume: 51
  start-page: 3171
  issue: 6
  year: 2019
  ident: 10.1016/j.jag.2024.103863_b0050
  article-title: Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2955599
– volume: 48
  start-page: 583
  issue: 2
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0185
  article-title: Exact and approximate stability of solutions to traveling salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2647440
– volume: 29
  start-page: 185
  issue: 1
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0005
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0723
– volume: 33
  start-page: 18087
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0090
  article-title: Hybrid models for learning to branch
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 22
  start-page: 7004
  issue: 11
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0265
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3000761
– volume: 122
  year: 2023
  ident: 10.1016/j.jag.2024.103863_b0290
  article-title: Spatial multi-objective optimization of institutional elderly-care facilities: A case study in Shanghai
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2024.103863_b0245
– volume: 52
  start-page: 495
  issue: 1
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0210
  article-title: Homotopic convex transformation: A new landscape smoothing method for the traveling salesman problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2981385
– volume: 519
  start-page: 205
  year: 2023
  ident: 10.1016/j.jag.2024.103863_b0280
  article-title: A survey for solving mixed integer programming via machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.024
– ident: 10.1016/j.jag.2024.103863_bib293
– volume: 307
  start-page: 1055
  issue: 3
  year: 2023
  ident: 10.1016/j.jag.2024.103863_bib291
  article-title: Memetic search for the minmax multiple traveling salesman problem with single and multiple depots
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2022.11.010
– volume: 11
  start-page: 5
  issue: 2
  year: 2019
  ident: 10.1016/j.jag.2024.103863_b0110
  article-title: GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions
  publication-title: Sigspatial Special
  doi: 10.1145/3377000.3377002
– volume: 23
  start-page: 250
  issue: 1
  year: 1992
  ident: 10.1016/j.jag.2024.103863_b0075
  article-title: A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem
  publication-title: Decis. Sci.
  doi: 10.1111/j.1540-5915.1992.tb00387.x
– volume: 17
  start-page: 2299211
  issue: 1
  year: 2024
  ident: 10.1016/j.jag.2024.103863_b0145
  article-title: Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2023.2299211
– volume: 76
  start-page: 436
  year: 2019
  ident: 10.1016/j.jag.2024.103863_b0160
  article-title: Mission-oriented ant-team ACO for min–max MTSP
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.048
– volume: 34
  start-page: 209
  issue: 3
  year: 2006
  ident: 10.1016/j.jag.2024.103863_b0020
  article-title: The multiple traveling salesman problem: an overview of formulations and solution procedures
  publication-title: Omega
  doi: 10.1016/j.omega.2004.10.004
– volume: 46
  start-page: 973
  issue: 4
  year: 2015
  ident: 10.1016/j.jag.2024.103863_b0190
  article-title: Stability of solutions to classes of traveling salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2418737
– volume: Vol. 3
  start-page: 2396
  year: 1996
  ident: 10.1016/j.jag.2024.103863_b0030
  publication-title: April). Dynamic Mission Planning for Multiple Mobile Robots
– volume: 8
  start-page: 106872
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0255
  article-title: Ant colony optimization with an improved pheromone model for solving MTSP with capacity and time window constraint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000501
– volume: 7
  start-page: 326
  issue: 4
  year: 1960
  ident: 10.1016/j.jag.2024.103863_b0175
  article-title: Integer programming formulation of traveling salesman problems
  publication-title: Journal of the ACM (JACM)
  doi: 10.1145/321043.321046
– volume: 34
  start-page: 625
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2024.103863_b0125
  article-title: GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2019.1684500
– ident: 10.1016/j.jag.2024.103863_b0220
  doi: 10.1109/IJCNN.2003.1223777
– volume: 162
  start-page: 106455.MLA
  year: 2024
  ident: 10.1016/j.jag.2024.103863_bib292
  article-title: A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem[J]
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2023.106455
– volume: 46
  start-page: 582
  issue: 3
  year: 2015
  ident: 10.1016/j.jag.2024.103863_b0260
  article-title: Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances, and algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2409837
– volume: 19
  start-page: 790
  issue: 7
  year: 1973
  ident: 10.1016/j.jag.2024.103863_b0225
  article-title: Computational experience with an m-salesman traveling salesman algorithm
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.19.7.790
– year: 2023
  ident: 10.1016/j.jag.2024.103863_b0065
  article-title: AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem
– volume: 6
  start-page: 321
  issue: 11
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0150
  article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi6110321
– volume: 30
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0240
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 18
  start-page: B-279
  issue: 6
  year: 1972
  ident: 10.1016/j.jag.2024.103863_b0010
  article-title: Computer-assisted school bus scheduling
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.18.6.B279
– ident: 10.1016/j.jag.2024.103863_b0055
– volume: 440
  start-page: 72
  year: 2021
  ident: 10.1016/j.jag.2024.103863_b0085
  article-title: LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.067
– ident: 10.1016/j.jag.2024.103863_b0205
  doi: 10.1109/WSC.1998.745084
– ident: 10.1016/j.jag.2024.103863_b0275
  doi: 10.1109/IPMM.1999.791495
– volume: 124
  year: 2023
  ident: 10.1016/j.jag.2024.103863_b0200
  article-title: Equalizing urban agriculture access in Glasgow: A spatial optimization approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2024.103863_b0170
– start-page: 261
  year: 2021
  ident: 10.1016/j.jag.2024.103863_b0060
  article-title: Automatic urban road network extraction from massive GPS trajectories of taxis
– volume: 124
  start-page: 267
  issue: 2
  year: 2000
  ident: 10.1016/j.jag.2024.103863_b0230
  article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00380-X
– volume: 45
  start-page: 2390
  issue: 11
  year: 2014
  ident: 10.1016/j.jag.2024.103863_b0140
  article-title: Colored traveling salesman problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2371918
– volume: 26
  start-page: 395
  issue: 4
  year: 1999
  ident: 10.1016/j.jag.2024.103863_b0215
  article-title: Competition-based neural network for the multiple travelling salesmen problem with MinMax objective
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(98)00069-0
– ident: 10.1016/j.jag.2024.103863_b0130
  doi: 10.1609/aaai.v30i1.10080
– ident: 10.1016/j.jag.2024.103863_b0025
– volume: 61
  start-page: 11
  issue: 1
  year: 1989
  ident: 10.1016/j.jag.2024.103863_b0250
  article-title: A neural network algorithm for the multiple traveling salesmen problem
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204755
– volume: 25
  start-page: 207
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0155
  article-title: On learning and branching: a survey
  publication-title: TOP
  doi: 10.1007/s11750-017-0451-6
– volume: 33
  start-page: 473
  issue: 3–4
  year: 1997
  ident: 10.1016/j.jag.2024.103863_b0235
  article-title: A competitive neural network algorithm for solving vehicle routing problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/S0360-8352(97)00171-X
– volume: 47
  start-page: 4302
  issue: 12
  year: 2017
  ident: 10.1016/j.jag.2024.103863_b0015
  article-title: A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2607220
– ident: 10.1016/j.jag.2024.103863_b0180
  doi: 10.1007/978-3-319-19644-2_22
– start-page: 76
  year: 2014
  ident: 10.1016/j.jag.2024.103863_b0105
– volume: 16
  start-page: 159
  issue: 2
  year: 1988
  ident: 10.1016/j.jag.2024.103863_b0195
  article-title: An effective method of balancing the workload amongst salesmen
  publication-title: Omega
  doi: 10.1016/0305-0483(88)90047-3
– ident: 10.1016/j.jag.2024.103863_b0095
– volume: 36
  start-page: 1
  issue: 1
  year: 1978
  ident: 10.1016/j.jag.2024.103863_b0120
  article-title: Branch-and-bound procedure and state—space representation of combinatorial optimization problems
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(78)90197-3
SSID ssj0017768
Score 2.4055398
Snippet •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural...
The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103863
SubjectTerms algorithms
Attention mechanism
Bipartite graph
Branch-and-bound
Graph neural network
Multiple traveling salesman problem
spatial data
Title BiGNN: Bipartite graph neural network with attention mechanism for solving multiple traveling salesman problems in urban logistics
URI https://dx.doi.org/10.1016/j.jag.2024.103863
https://www.proquest.com/docview/3206202905
https://doaj.org/article/edc7fc9021f84b0485bea376f0b6294e
Volume 129
WOSCitedRecordID wos001234648200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9EcGTUMw2fcWbKz4OsnhQ8BbyqlTcKtuuP8Bf7kzS-jroxWuZtmlnkvkmmfmGkMNkWGYmBg2oYeki8FBlpJUQUc6sAjwBALr0hcLX-Xhc3N-Lmy-tvjAnLNADhx937KzJSyPAFZVFosHeUu0UzIqS6SwWicPVF1BPH0x15wd5Horg0kxERcLj_jzTZ3Y9qgcIDOPEk4Nn_JtH8sT93xzTjyXa-52LFbLcAUZ6Gga6SuZcvUaWvtAIrpHN889qNRDtpmuzTt5G1eV4fEJH1Qt-aOuo56emSGIJgnVIAae4F0uRZ9NnPtKJw2rgqplQALQUbBP3HGifeUhbbFiERey0AefSTFRNu640Da1qOptquBIKiyrTbJC7i_Pbs6uoa7oQGcAmbWRjw3WhmVOZSE1unNKxjVNVGMACgOaYFZYVIrUQmBmAa1pBwMGNgUDS5LowfJPM18-12yJ0yJVNtNJZal3imNBcAP4oHMc8rTR3A8L6Hy9Nx0iOjTGeZJ969ihBVxJ1JYOuBuTo45aXQMfxm_AItfkhiEza_gLYl-zsS_5lXwOS9LYgO1ASwAY8qvrt3Qe93UiYsHgKo2r3PGskj1kGgoKl2_8xvh2yiK8NOZi7ZL6dztweWTCvbdVM9_2seAf9ZBLc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiGNN%3A+Bipartite+graph+neural+network+with+attention+mechanism+for+solving+multiple+traveling+salesman+problems+in+urban+logistics&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Liang%2C+Haojian&rft.au=Wang%2C+Shaohua&rft.au=Li%2C+Huilai&rft.au=Zhou%2C+Liang&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=129&rft_id=info:doi/10.1016%2Fj.jag.2024.103863&rft.externalDocID=S1569843224002176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon