BiGNN: Bipartite graph neural network with attention mechanism for solving multiple traveling salesman problems in urban logistics
•Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning...
Saved in:
| Published in: | International journal of applied earth observation and geoinformation Vol. 129; p. 103863 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2024
Elsevier |
| Subjects: | |
| ISSN: | 1569-8432, 1872-826X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning algorithms.•Real-World Application: The method is used to solve the Surat Road network data.
The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones. |
|---|---|
| AbstractList | •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural Network with Attention Mechanism is proposed to learn the branch strategies.•Comparative Analysis: The models outperform other machine learning algorithms.•Real-World Application: The method is used to solve the Surat Road network data.
The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones. The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and Bounded-MTSP aim to distribute workload evenly among salesmen and impose constraints on visited cities, respectively. Branch-and-bound (B&B) provides an exact algorithm solution for these problems. The Learn to Branch (L2B) approach guides branch node selection through deep learning. In this study, we utilize mathematical modeling of Bipartite Graph Neural Network (BiGNN) and an attention mechanism to support B&B in exploring solution spaces through imitation learning. The problems are framed to formulate mixed integer linear programming, which is different from conventional algorithms. It is proposed that a bipartite graph network approach makes a feature representation by setting a structure of constraints and variables. Experimental results showed that our model can generate more accurate solutions than three benchmark models. The BiGNN model can effectively learn the strong branch strategy, which reduces solution time by replacing complex calculations with fast approximations. Additionally, the small-scale instances model can be applied to larger-scale ones. |
| ArticleNumber | 103863 |
| Author | Li, Huilai Liang, Haojian Zhou, Liang Wang, Shaohua Zhang, Xueyan Wang, Shaowen |
| Author_xml | – sequence: 1 givenname: Haojian surname: Liang fullname: Liang, Haojian organization: Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 2 givenname: Shaohua orcidid: 0000-0001-8651-9505 surname: Wang fullname: Wang, Shaohua email: wangshaohua@aircas.ac.cn organization: Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 3 givenname: Huilai surname: Li fullname: Li, Huilai organization: School of Artificial Intelligence, Jilin University, Changchun 130012, China – sequence: 4 givenname: Liang surname: Zhou fullname: Zhou, Liang organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 5 givenname: Xueyan surname: Zhang fullname: Zhang, Xueyan organization: Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA – sequence: 6 givenname: Shaowen surname: Wang fullname: Wang, Shaowen email: shaowen@illinois.edu organization: CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois Urbana-Champaign, 1301 W Green St, Urbana, IL, 61801, USA |
| BookMark | eNp9UU1v1TAQjFCRaAs_gJuPXPKwnS8HTrQqpVJVLiBxs5zNJs_BsYPtvIorvxyHIA4cetrd0c6sduYiO7POYpa9ZvTAKKvfTodJjQdOeZnmQtTFs-yciYbngtffzlJf1W0uyoK_yC5CmChlTVOL8-zXlb59eHhHrvSifNQRyejVciQWV69MKvHR-e_kUccjUTGijdpZMiMcldVhJoPzJDhz0nYk82qiXgyS6NUJzQYFZTDMypLFu87gHIi2ZPVdQowbdYgawsvs-aBMwFd_62X29ePNl-tP-f3n27vrD_c5lEUb855D0YmOoqrbChpA1fGeV0oAE6yigvZtT0Vb9SVlICrWqUpUBQBnDJpOQHGZ3e26vVOTXLyelf8pndLyD-D8KDcLwKDEHpoBWsrZIMqOlqLqUBVNPdCu5m2JSevNrpX--rFiiHLWAdAYZdGtQRac1imMllZple2r4F0IHod_pxmVW3Zykik7uWUn9-wSp_mPAzqqzfpkrTZPMt_vTExOnjR6GUCjBey1R4jpVf0E-zezGbhK |
| CitedBy_id | crossref_primary_10_1080_13658816_2024_2413394 crossref_primary_10_3389_fenrg_2025_1596471 crossref_primary_10_12677_orf_2025_152085 crossref_primary_10_1109_ACCESS_2024_3486686 |
| Cites_doi | 10.1016/j.knosys.2020.106244 10.1049/iet-its.2019.0873 10.1016/j.ejor.2005.04.027 10.1109/TCYB.2021.3049635 10.1287/mnsc.16.6.B373 10.1109/TCYB.2019.2955599 10.1109/TCYB.2016.2647440 10.1287/ijoc.2016.0723 10.1109/TITS.2020.3000761 10.1109/TCYB.2020.2981385 10.1016/j.neucom.2022.11.024 10.1016/j.ejor.2022.11.010 10.1145/3377000.3377002 10.1111/j.1540-5915.1992.tb00387.x 10.1080/17538947.2023.2299211 10.1016/j.asoc.2018.11.048 10.1016/j.omega.2004.10.004 10.1109/TCYB.2015.2418737 10.1109/ACCESS.2020.3000501 10.1145/321043.321046 10.1080/13658816.2019.1684500 10.1109/IJCNN.2003.1223777 10.1016/j.cor.2023.106455 10.1109/TCYB.2015.2409837 10.1287/mnsc.19.7.790 10.3390/ijgi6110321 10.1287/mnsc.18.6.B279 10.1016/j.neucom.2021.01.067 10.1109/WSC.1998.745084 10.1109/IPMM.1999.791495 10.1016/S0377-2217(99)00380-X 10.1109/TCYB.2014.2371918 10.1016/S0305-0548(98)00069-0 10.1609/aaai.v30i1.10080 10.1007/BF00204755 10.1007/s11750-017-0451-6 10.1016/S0360-8352(97)00171-X 10.1109/TCYB.2016.2607220 10.1007/978-3-319-19644-2_22 10.1016/0305-0483(88)90047-3 10.1016/S0019-9958(78)90197-3 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
| DOI | 10.1016/j.jag.2024.103863 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-826X |
| ExternalDocumentID | oai_doaj_org_article_edc7fc9021f84b0485bea376f0b6294e 10_1016_j_jag_2024_103863 S1569843224002176 |
| GroupedDBID | 0SF 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN AITUG ANKPU APXCP CITATION EFJIC EFKBS 7S9 L.6 |
| ID | FETCH-LOGICAL-c439t-d2c3b8b0ea695c7ceab2d25a8c1815080d9d0895d401c851ba5853cc211c7b8c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234648200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1569-8432 |
| IngestDate | Fri Oct 03 12:38:02 EDT 2025 Thu Oct 02 22:51:37 EDT 2025 Sat Nov 29 03:32:47 EST 2025 Tue Nov 18 22:10:32 EST 2025 Sat Jun 01 15:42:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attention mechanism Branch-and-bound Bipartite graph Multiple traveling salesman problem Graph neural network |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-d2c3b8b0ea695c7ceab2d25a8c1815080d9d0895d401c851ba5853cc211c7b8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8651-9505 |
| OpenAccessLink | https://doaj.org/article/edc7fc9021f84b0485bea376f0b6294e |
| PQID | 3206202905 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_edc7fc9021f84b0485bea376f0b6294e proquest_miscellaneous_3206202905 crossref_primary_10_1016_j_jag_2024_103863 crossref_citationtrail_10_1016_j_jag_2024_103863 elsevier_sciencedirect_doi_10_1016_j_jag_2024_103863 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 20240501 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Brumitt, Stentz (b0030) 1996; Vol. 3 Lu, Yue (b0160) 2019; 76 Shi, Sun, Zhang, Ye (b0210) 2020; 52 Gao, Li, Rao, Mai, Prestby, Marks, Hu (b0060) 2021 Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Proceedings of the International Joint Conference on Neural Networks, 2003. (Vol. 3, pp. 2340-2343). IEEE. Torki, Somhon, Enkawa (b0235) 1997; 33 Gupta, Gasse, Khalil, Mudigonda, Lodi, Bengio (b0090) 2020; 33 Hu, Gao, Lunga, Li, Newsam, Bhaduri (b0110) 2019; 11 Liu, Gao, Qiu, Liu, Yan, Lu (b0150) 2017; 6 Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940. Lodi, Zarpellon (b0155) 2017; 25 Niendorf, Girard (b0185) 2017; 48 Gorenstein (b0080) 1970; 16 Zhang, T., Gruver, W. A., & Smith, M. H. (1999, July). Team scheduling by genetic search. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296) (Vol. 2, pp. 839-844). IEEE. Alvarez, Louveaux, Wehenkel (b0005) 2017; 29 (pp. 257-268). Springer International Publishing. Wang, Zhou, Wang, Zhang, Chen, Zheng (b0260) 2015; 46 Tang, Liu, Rong, Yang (b0230) 2000; 124 Zhang, Chen, Guo, Li (b0270) 2020; 14 Russell, Li, Wang (b0200) 2023; 124 Janowicz, Gao, McKenzie, Hu, Bhaduri (b0125) 2020; 34 Somhom, Modares, Enkawa (b0215) 1999; 26 Zhang, Liu, Li, Zhen, Yuan, Li, Yan (b0280) 2023; 519 Wang, Ma, Li, Zhai, Qiao (b0255) 2020; 8 Zhang, Chen, Cui, Guo, Zhu (b0265) 2020; 22 Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28. Carter, Ragsdale (b0040) 2006; 175 Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W. K., Eifler, L., Gasse, M., ... & Witzig, J. (2020). The SCIP optimization suite 7.0. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (b0240) 2017; 30 Ibaraki (b0120) 1978; 36 Bektas (b0020) 2006; 34 Miller, Tucker, Zemlin (b0175) 1960; 7 Zhou, Cao (b0290) 2023; 122 Gao, Zhou, Xu, Lan, Xiao (b0065) 2023 He, Hao (bib291) 2023; 307 He, Daume, Eisner (b0100) 2014 Niendorf, Kabamba, Girard (b0190) 2015; 46 Li, Zhou, Sun, Dai, Yu (b0140) 2014; 45 Necula, R., Breaban, M., & Raschip, M. (2015). Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In Mahmoudinazlou, Kwon (bib292) 2024; 162 Angel, Caudle, Noonan, Whinston (b0010) 1972; 18 Gasse, Chételat, Ferroni, Charlin, Lodi (b0070) 2019 Hosseinabadi, Kardgar, Shojafar, Shamshirband, Abraham (b0105) 2014 Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2019). Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936. Svestka, Huckfeldt (b0225) 1973; 19 Zhong (b0285) 2022; 47 Gui, Sun, Yang, Peng, Li, Wu, Gong (b0085) 2021; 440 Wacholder, Han, Mann (b0250) 1989; 61 Liang, Wang, Li, Zhou, Chen, Zhang, Chen (b0145) 2024; 17 Hansknecht, C., Joormann, I., & Stiller, S. (2018). Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed integer programming. In Okonjo-Adigwe (b0195) 1988; 16 Ryan, J. L., Bailey, T. G., Moore, J. T., & Carlton, W. B. (1998, December). Reactive tabu search in unmanned aerial reconnaissance simulations. In 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274) (Vol. 1, pp. 873-879). IEEE. Kaempfer Y, Wolf L. Learning the multiple traveling salesmen problem with permutation invariant pooling networks[J]. arXiv preprint arXiv:1803.09621, 2018. (Vol. 30, No. 1). Duan, He, Yen (b0045) 2021; 52 Lupoaie, Chili, Breaban, Raschip (b0165) 2019 Hu, Yao, Lee (b0115) 2020; 204 Gilbert, Hofstra (b0075) 1992; 23 Azad, Islam, Chakraborty (b0015) 2017; 47 Feng, Zhou, Gupta, Zhong, Zhu, Tan, Qin (b0050) 2019; 51 He (10.1016/j.jag.2024.103863_b0100) 2014 Torki (10.1016/j.jag.2024.103863_b0235) 1997; 33 Niendorf (10.1016/j.jag.2024.103863_b0190) 2015; 46 Shi (10.1016/j.jag.2024.103863_b0210) 2020; 52 10.1016/j.jag.2024.103863_b0095 10.1016/j.jag.2024.103863_b0130 Duan (10.1016/j.jag.2024.103863_b0045) 2021; 52 Li (10.1016/j.jag.2024.103863_b0140) 2014; 45 Somhom (10.1016/j.jag.2024.103863_b0215) 1999; 26 10.1016/j.jag.2024.103863_b0055 Niendorf (10.1016/j.jag.2024.103863_b0185) 2017; 48 Janowicz (10.1016/j.jag.2024.103863_b0125) 2020; 34 Gasse (10.1016/j.jag.2024.103863_b0070) 2019 Hu (10.1016/j.jag.2024.103863_b0115) 2020; 204 Zhang (10.1016/j.jag.2024.103863_b0270) 2020; 14 Ibaraki (10.1016/j.jag.2024.103863_b0120) 1978; 36 10.1016/j.jag.2024.103863_b0170 Liu (10.1016/j.jag.2024.103863_b0150) 2017; 6 Russell (10.1016/j.jag.2024.103863_b0200) 2023; 124 Zhong (10.1016/j.jag.2024.103863_b0285) 2022; 47 10.1016/j.jag.2024.103863_b0205 Azad (10.1016/j.jag.2024.103863_b0015) 2017; 47 Gorenstein (10.1016/j.jag.2024.103863_b0080) 1970; 16 Gao (10.1016/j.jag.2024.103863_b0060) 2021 Gupta (10.1016/j.jag.2024.103863_b0090) 2020; 33 Brumitt (10.1016/j.jag.2024.103863_b0030) 1996; Vol. 3 10.1016/j.jag.2024.103863_b0245 Vaswani (10.1016/j.jag.2024.103863_b0240) 2017; 30 Angel (10.1016/j.jag.2024.103863_b0010) 1972; 18 Miller (10.1016/j.jag.2024.103863_b0175) 1960; 7 Zhou (10.1016/j.jag.2024.103863_b0290) 2023; 122 Svestka (10.1016/j.jag.2024.103863_b0225) 1973; 19 Carter (10.1016/j.jag.2024.103863_b0040) 2006; 175 Gilbert (10.1016/j.jag.2024.103863_b0075) 1992; 23 Lupoaie (10.1016/j.jag.2024.103863_b0165) 2019 Hu (10.1016/j.jag.2024.103863_b0110) 2019; 11 Lodi (10.1016/j.jag.2024.103863_b0155) 2017; 25 10.1016/j.jag.2024.103863_b0275 Wang (10.1016/j.jag.2024.103863_b0260) 2015; 46 Tang (10.1016/j.jag.2024.103863_b0230) 2000; 124 Liang (10.1016/j.jag.2024.103863_b0145) 2024; 17 10.1016/j.jag.2024.103863_bib293 Zhang (10.1016/j.jag.2024.103863_b0265) 2020; 22 Bektas (10.1016/j.jag.2024.103863_b0020) 2006; 34 Alvarez (10.1016/j.jag.2024.103863_b0005) 2017; 29 Gui (10.1016/j.jag.2024.103863_b0085) 2021; 440 Lu (10.1016/j.jag.2024.103863_b0160) 2019; 76 Zhang (10.1016/j.jag.2024.103863_b0280) 2023; 519 Feng (10.1016/j.jag.2024.103863_b0050) 2019; 51 Gao (10.1016/j.jag.2024.103863_b0065) 2023 He (10.1016/j.jag.2024.103863_bib291) 2023; 307 10.1016/j.jag.2024.103863_b0220 10.1016/j.jag.2024.103863_b0025 Wang (10.1016/j.jag.2024.103863_b0255) 2020; 8 10.1016/j.jag.2024.103863_b0180 Mahmoudinazlou (10.1016/j.jag.2024.103863_bib292) 2024; 162 Hosseinabadi (10.1016/j.jag.2024.103863_b0105) 2014 Okonjo-Adigwe (10.1016/j.jag.2024.103863_b0195) 1988; 16 Wacholder (10.1016/j.jag.2024.103863_b0250) 1989; 61 |
| References_xml | – reference: Zhang, T., Gruver, W. A., & Smith, M. H. (1999, July). Team scheduling by genetic search. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296) (Vol. 2, pp. 839-844). IEEE. – volume: 45 start-page: 2390 year: 2014 end-page: 2401 ident: b0140 article-title: Colored traveling salesman problem publication-title: IEEE Trans. Cybern. – year: 2023 ident: b0065 article-title: AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 124 year: 2023 ident: b0200 article-title: Equalizing urban agriculture access in Glasgow: A spatial optimization approach publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 16 start-page: B-373 year: 1970 ident: b0080 article-title: Printing press scheduling for multi-edition periodicals publication-title: Manag. Sci. – volume: Vol. 3 start-page: 2396 year: 1996 end-page: 2401 ident: b0030 publication-title: April). Dynamic Mission Planning for Multiple Mobile Robots – volume: 48 start-page: 583 year: 2017 end-page: 595 ident: b0185 article-title: Exact and approximate stability of solutions to traveling salesman problems publication-title: IEEE Trans. Cybern. – volume: 17 start-page: 2299211 year: 2024 ident: b0145 article-title: Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis publication-title: Int. J. Digital Earth – reference: Kaempfer Y, Wolf L. Learning the multiple traveling salesmen problem with permutation invariant pooling networks[J]. arXiv preprint arXiv:1803.09621, 2018. – reference: Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940. – volume: 11 start-page: 5 year: 2019 end-page: 15 ident: b0110 article-title: GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions publication-title: Sigspatial Special – volume: 22 start-page: 7004 year: 2020 end-page: 7014 ident: b0265 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 47 start-page: 4302 year: 2017 end-page: 4315 ident: b0015 article-title: A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations publication-title: IEEE Trans. Cybern. – volume: 36 start-page: 1 year: 1978 end-page: 27 ident: b0120 article-title: Branch-and-bound procedure and state—space representation of combinatorial optimization problems publication-title: Inf. Control – volume: 14 start-page: 1210 year: 2020 end-page: 1217 ident: b0270 article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit publication-title: IET Intel. Transport Syst. – volume: 52 start-page: 495 year: 2020 end-page: 507 ident: b0210 article-title: Homotopic convex transformation: A new landscape smoothing method for the traveling salesman problem publication-title: IEEE Trans. Cybern. – start-page: 73 year: 2019 end-page: 80 ident: b0165 article-title: SOM-guided evolutionary search for solving MinMax multiple-TSP publication-title: In 2019 IEEE Congress on Evolutionary Computation (CEC) – volume: 7 start-page: 326 year: 1960 end-page: 329 ident: b0175 article-title: Integer programming formulation of traveling salesman problems publication-title: Journal of the ACM (JACM) – volume: 33 start-page: 473 year: 1997 end-page: 476 ident: b0235 article-title: A competitive neural network algorithm for solving vehicle routing problem publication-title: Comput. Ind. Eng. – volume: 23 start-page: 250 year: 1992 end-page: 259 ident: b0075 article-title: A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem publication-title: Decis. Sci. – volume: 30 year: 2017 ident: b0240 article-title: Attention is all you need publication-title: Adv. Neural Inf. Proces. Syst. – volume: 175 start-page: 246 year: 2006 end-page: 257 ident: b0040 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: Eur. J. Oper. Res. – reference: (pp. 257-268). Springer International Publishing. – start-page: 261 year: 2021 end-page: 283 ident: b0060 article-title: Automatic urban road network extraction from massive GPS trajectories of taxis publication-title: Handbook of Big Geospatial Data – reference: Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28. – volume: 204 year: 2020 ident: b0115 article-title: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs publication-title: Knowl.-Based Syst. – volume: 16 start-page: 159 year: 1988 end-page: 163 ident: b0195 article-title: An effective method of balancing the workload amongst salesmen publication-title: Omega – volume: 47 start-page: 1988 year: 2022 end-page: 2002 ident: b0285 article-title: Deep Mapping—A Critical Engagement of Cartography with Neuroscience[J] publication-title: Geomatics and Information Science of Wuhan University – volume: 162 start-page: 106455.MLA year: 2024 ident: bib292 article-title: A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem[J] publication-title: Computers & Operations Research – volume: 29 start-page: 185 year: 2017 end-page: 195 ident: b0005 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS J. Comput. – volume: 440 start-page: 72 year: 2021 end-page: 88 ident: b0085 article-title: LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points publication-title: Neurocomputing – reference: Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed integer programming. In – volume: 25 start-page: 207 year: 2017 end-page: 236 ident: b0155 article-title: On learning and branching: a survey publication-title: TOP – reference: (Vol. 30, No. 1). – reference: Ryan, J. L., Bailey, T. G., Moore, J. T., & Carlton, W. B. (1998, December). Reactive tabu search in unmanned aerial reconnaissance simulations. In 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274) (Vol. 1, pp. 873-879). IEEE. – volume: 34 start-page: 209 year: 2006 end-page: 219 ident: b0020 article-title: The multiple traveling salesman problem: an overview of formulations and solution procedures publication-title: Omega – reference: Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Proceedings of the International Joint Conference on Neural Networks, 2003. (Vol. 3, pp. 2340-2343). IEEE. – volume: 122 year: 2023 ident: b0290 article-title: Spatial multi-objective optimization of institutional elderly-care facilities: A case study in Shanghai publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W. K., Eifler, L., Gasse, M., ... & Witzig, J. (2020). The SCIP optimization suite 7.0. – volume: 46 start-page: 582 year: 2015 end-page: 594 ident: b0260 article-title: Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances, and algorithms publication-title: IEEE Trans. Cybern. – start-page: 32 year: 2019 ident: b0070 article-title: Exact combinatorial optimization with graph convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 51 start-page: 3171 year: 2019 end-page: 3184 ident: b0050 article-title: Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking publication-title: IEEE Trans. Cybern. – volume: 18 start-page: B-279 year: 1972 ident: b0010 article-title: Computer-assisted school bus scheduling publication-title: Manag. Sci. – reference: Necula, R., Breaban, M., & Raschip, M. (2015). Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In – volume: 124 start-page: 267 year: 2000 end-page: 282 ident: b0230 article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex publication-title: Eur. J. Oper. Res. – volume: 8 start-page: 106872 year: 2020 end-page: 106879 ident: b0255 article-title: Ant colony optimization with an improved pheromone model for solving MTSP with capacity and time window constraint publication-title: IEEE Access – volume: 46 start-page: 973 year: 2015 end-page: 985 ident: b0190 article-title: Stability of solutions to classes of traveling salesman problems publication-title: IEEE Trans. Cybern. – start-page: 27 year: 2014 ident: b0100 article-title: Learning to search in branch and bound algorithms publication-title: Advances in Neural Information Processing Systems – volume: 76 start-page: 436 year: 2019 end-page: 444 ident: b0160 article-title: Mission-oriented ant-team ACO for min–max MTSP publication-title: Appl. Soft Comput. – volume: 34 start-page: 625 year: 2020 end-page: 636 ident: b0125 article-title: GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond publication-title: Int. J. Geogr. Inf. Sci. – volume: 33 start-page: 18087 year: 2020 end-page: 18097 ident: b0090 article-title: Hybrid models for learning to branch publication-title: Adv. Neural Inf. Proces. Syst. – volume: 26 start-page: 395 year: 1999 end-page: 407 ident: b0215 article-title: Competition-based neural network for the multiple travelling salesmen problem with MinMax objective publication-title: Comput. Oper. Res. – volume: 19 start-page: 790 year: 1973 end-page: 799 ident: b0225 article-title: Computational experience with an m-salesman traveling salesman algorithm publication-title: Manag. Sci. – volume: 307 start-page: 1055 year: 2023 end-page: 1070 ident: bib291 article-title: Memetic search for the minmax multiple traveling salesman problem with single and multiple depots publication-title: European Journal of Operational Research – volume: 52 start-page: 8300 year: 2021 end-page: 8314 ident: b0045 article-title: Robust multiobjective optimization for vehicle routing problem with time windows publication-title: IEEE Trans. Cybern. – reference: Hansknecht, C., Joormann, I., & Stiller, S. (2018). Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415. – volume: 61 start-page: 11 year: 1989 end-page: 19 ident: b0250 article-title: A neural network algorithm for the multiple traveling salesmen problem publication-title: Biol. Cybern. – start-page: 76 year: 2014 end-page: 81 ident: b0105 publication-title: November). GELS-GA: Hybrid Metaheuristic Algorithm for Solving Multiple Travelling Salesman Problem – volume: 519 start-page: 205 year: 2023 end-page: 217 ident: b0280 article-title: A survey for solving mixed integer programming via machine learning publication-title: Neurocomputing – reference: Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2019). Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936. – volume: 6 start-page: 321 year: 2017 ident: b0150 article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes publication-title: ISPRS Int. J. Geo Inf. – volume: 204 year: 2020 ident: 10.1016/j.jag.2024.103863_b0115 article-title: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106244 – volume: 47 start-page: 1988 issue: 12 year: 2022 ident: 10.1016/j.jag.2024.103863_b0285 article-title: Deep Mapping—A Critical Engagement of Cartography with Neuroscience[J] publication-title: Geomatics and Information Science of Wuhan University – start-page: 32 year: 2019 ident: 10.1016/j.jag.2024.103863_b0070 article-title: Exact combinatorial optimization with graph convolutional neural networks – volume: 14 start-page: 1210 issue: 10 year: 2020 ident: 10.1016/j.jag.2024.103863_b0270 article-title: Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit publication-title: IET Intel. Transport Syst. doi: 10.1049/iet-its.2019.0873 – start-page: 73 year: 2019 ident: 10.1016/j.jag.2024.103863_b0165 article-title: SOM-guided evolutionary search for solving MinMax multiple-TSP – volume: 175 start-page: 246 issue: 1 year: 2006 ident: 10.1016/j.jag.2024.103863_b0040 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.04.027 – volume: 52 start-page: 8300 issue: 8 year: 2021 ident: 10.1016/j.jag.2024.103863_b0045 article-title: Robust multiobjective optimization for vehicle routing problem with time windows publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3049635 – volume: 16 start-page: B-373 issue: 6 year: 1970 ident: 10.1016/j.jag.2024.103863_b0080 article-title: Printing press scheduling for multi-edition periodicals publication-title: Manag. Sci. doi: 10.1287/mnsc.16.6.B373 – start-page: 27 year: 2014 ident: 10.1016/j.jag.2024.103863_b0100 article-title: Learning to search in branch and bound algorithms – volume: 51 start-page: 3171 issue: 6 year: 2019 ident: 10.1016/j.jag.2024.103863_b0050 article-title: Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2955599 – volume: 48 start-page: 583 issue: 2 year: 2017 ident: 10.1016/j.jag.2024.103863_b0185 article-title: Exact and approximate stability of solutions to traveling salesman problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2647440 – volume: 29 start-page: 185 issue: 1 year: 2017 ident: 10.1016/j.jag.2024.103863_b0005 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2016.0723 – volume: 33 start-page: 18087 year: 2020 ident: 10.1016/j.jag.2024.103863_b0090 article-title: Hybrid models for learning to branch publication-title: Adv. Neural Inf. Proces. Syst. – volume: 22 start-page: 7004 issue: 11 year: 2020 ident: 10.1016/j.jag.2024.103863_b0265 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3000761 – volume: 122 year: 2023 ident: 10.1016/j.jag.2024.103863_b0290 article-title: Spatial multi-objective optimization of institutional elderly-care facilities: A case study in Shanghai publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2024.103863_b0245 – volume: 52 start-page: 495 issue: 1 year: 2020 ident: 10.1016/j.jag.2024.103863_b0210 article-title: Homotopic convex transformation: A new landscape smoothing method for the traveling salesman problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2981385 – volume: 519 start-page: 205 year: 2023 ident: 10.1016/j.jag.2024.103863_b0280 article-title: A survey for solving mixed integer programming via machine learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.11.024 – ident: 10.1016/j.jag.2024.103863_bib293 – volume: 307 start-page: 1055 issue: 3 year: 2023 ident: 10.1016/j.jag.2024.103863_bib291 article-title: Memetic search for the minmax multiple traveling salesman problem with single and multiple depots publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2022.11.010 – volume: 11 start-page: 5 issue: 2 year: 2019 ident: 10.1016/j.jag.2024.103863_b0110 article-title: GeoAI at ACM SIGSPATIAL: progress, challenges, and future directions publication-title: Sigspatial Special doi: 10.1145/3377000.3377002 – volume: 23 start-page: 250 issue: 1 year: 1992 ident: 10.1016/j.jag.2024.103863_b0075 article-title: A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem publication-title: Decis. Sci. doi: 10.1111/j.1540-5915.1992.tb00387.x – volume: 17 start-page: 2299211 issue: 1 year: 2024 ident: 10.1016/j.jag.2024.103863_b0145 article-title: Sponet: solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2023.2299211 – volume: 76 start-page: 436 year: 2019 ident: 10.1016/j.jag.2024.103863_b0160 article-title: Mission-oriented ant-team ACO for min–max MTSP publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.048 – volume: 34 start-page: 209 issue: 3 year: 2006 ident: 10.1016/j.jag.2024.103863_b0020 article-title: The multiple traveling salesman problem: an overview of formulations and solution procedures publication-title: Omega doi: 10.1016/j.omega.2004.10.004 – volume: 46 start-page: 973 issue: 4 year: 2015 ident: 10.1016/j.jag.2024.103863_b0190 article-title: Stability of solutions to classes of traveling salesman problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2418737 – volume: Vol. 3 start-page: 2396 year: 1996 ident: 10.1016/j.jag.2024.103863_b0030 publication-title: April). Dynamic Mission Planning for Multiple Mobile Robots – volume: 8 start-page: 106872 year: 2020 ident: 10.1016/j.jag.2024.103863_b0255 article-title: Ant colony optimization with an improved pheromone model for solving MTSP with capacity and time window constraint publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000501 – volume: 7 start-page: 326 issue: 4 year: 1960 ident: 10.1016/j.jag.2024.103863_b0175 article-title: Integer programming formulation of traveling salesman problems publication-title: Journal of the ACM (JACM) doi: 10.1145/321043.321046 – volume: 34 start-page: 625 issue: 4 year: 2020 ident: 10.1016/j.jag.2024.103863_b0125 article-title: GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2019.1684500 – ident: 10.1016/j.jag.2024.103863_b0220 doi: 10.1109/IJCNN.2003.1223777 – volume: 162 start-page: 106455.MLA year: 2024 ident: 10.1016/j.jag.2024.103863_bib292 article-title: A hybrid genetic algorithm for the min–max Multiple Traveling Salesman Problem[J] publication-title: Computers & Operations Research doi: 10.1016/j.cor.2023.106455 – volume: 46 start-page: 582 issue: 3 year: 2015 ident: 10.1016/j.jag.2024.103863_b0260 article-title: Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances, and algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2409837 – volume: 19 start-page: 790 issue: 7 year: 1973 ident: 10.1016/j.jag.2024.103863_b0225 article-title: Computational experience with an m-salesman traveling salesman algorithm publication-title: Manag. Sci. doi: 10.1287/mnsc.19.7.790 – year: 2023 ident: 10.1016/j.jag.2024.103863_b0065 article-title: AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem – volume: 6 start-page: 321 issue: 11 year: 2017 ident: 10.1016/j.jag.2024.103863_b0150 article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi6110321 – volume: 30 year: 2017 ident: 10.1016/j.jag.2024.103863_b0240 article-title: Attention is all you need publication-title: Adv. Neural Inf. Proces. Syst. – volume: 18 start-page: B-279 issue: 6 year: 1972 ident: 10.1016/j.jag.2024.103863_b0010 article-title: Computer-assisted school bus scheduling publication-title: Manag. Sci. doi: 10.1287/mnsc.18.6.B279 – ident: 10.1016/j.jag.2024.103863_b0055 – volume: 440 start-page: 72 year: 2021 ident: 10.1016/j.jag.2024.103863_b0085 article-title: LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.067 – ident: 10.1016/j.jag.2024.103863_b0205 doi: 10.1109/WSC.1998.745084 – ident: 10.1016/j.jag.2024.103863_b0275 doi: 10.1109/IPMM.1999.791495 – volume: 124 year: 2023 ident: 10.1016/j.jag.2024.103863_b0200 article-title: Equalizing urban agriculture access in Glasgow: A spatial optimization approach publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2024.103863_b0170 – start-page: 261 year: 2021 ident: 10.1016/j.jag.2024.103863_b0060 article-title: Automatic urban road network extraction from massive GPS trajectories of taxis – volume: 124 start-page: 267 issue: 2 year: 2000 ident: 10.1016/j.jag.2024.103863_b0230 article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00380-X – volume: 45 start-page: 2390 issue: 11 year: 2014 ident: 10.1016/j.jag.2024.103863_b0140 article-title: Colored traveling salesman problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2371918 – volume: 26 start-page: 395 issue: 4 year: 1999 ident: 10.1016/j.jag.2024.103863_b0215 article-title: Competition-based neural network for the multiple travelling salesmen problem with MinMax objective publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(98)00069-0 – ident: 10.1016/j.jag.2024.103863_b0130 doi: 10.1609/aaai.v30i1.10080 – ident: 10.1016/j.jag.2024.103863_b0025 – volume: 61 start-page: 11 issue: 1 year: 1989 ident: 10.1016/j.jag.2024.103863_b0250 article-title: A neural network algorithm for the multiple traveling salesmen problem publication-title: Biol. Cybern. doi: 10.1007/BF00204755 – volume: 25 start-page: 207 year: 2017 ident: 10.1016/j.jag.2024.103863_b0155 article-title: On learning and branching: a survey publication-title: TOP doi: 10.1007/s11750-017-0451-6 – volume: 33 start-page: 473 issue: 3–4 year: 1997 ident: 10.1016/j.jag.2024.103863_b0235 article-title: A competitive neural network algorithm for solving vehicle routing problem publication-title: Comput. Ind. Eng. doi: 10.1016/S0360-8352(97)00171-X – volume: 47 start-page: 4302 issue: 12 year: 2017 ident: 10.1016/j.jag.2024.103863_b0015 article-title: A heuristic initialized stochastic memetic algorithm for MDPVRP with interdependent depot operations publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2607220 – ident: 10.1016/j.jag.2024.103863_b0180 doi: 10.1007/978-3-319-19644-2_22 – start-page: 76 year: 2014 ident: 10.1016/j.jag.2024.103863_b0105 – volume: 16 start-page: 159 issue: 2 year: 1988 ident: 10.1016/j.jag.2024.103863_b0195 article-title: An effective method of balancing the workload amongst salesmen publication-title: Omega doi: 10.1016/0305-0483(88)90047-3 – ident: 10.1016/j.jag.2024.103863_b0095 – volume: 36 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.jag.2024.103863_b0120 article-title: Branch-and-bound procedure and state—space representation of combinatorial optimization problems publication-title: Inf. Control doi: 10.1016/S0019-9958(78)90197-3 |
| SSID | ssj0017768 |
| Score | 2.4055398 |
| Snippet | •Learn to Branch: A new approach is proposed to optimize the branch strategy in Branch-and-bound.•Deep Learning Model: The new model Bipartite Graph Neural... The multiple traveling salesman problems (MTSP), which arise from real world problems, are essential in urban logistics. Variations such as MinMax-MTSP and... |
| SourceID | doaj proquest crossref elsevier |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103863 |
| SubjectTerms | algorithms Attention mechanism Bipartite graph Branch-and-bound Graph neural network Multiple traveling salesman problem spatial data |
| Title | BiGNN: Bipartite graph neural network with attention mechanism for solving multiple traveling salesman problems in urban logistics |
| URI | https://dx.doi.org/10.1016/j.jag.2024.103863 https://www.proquest.com/docview/3206202905 https://doaj.org/article/edc7fc9021f84b0485bea376f0b6294e |
| Volume | 129 |
| WOSCitedRecordID | wos001234648200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxIEeqkJBLAVkpJ4qRXWcOIm5sQjooVpxaBE3y6-goG4WbbL8gP7yztgJrwNcyDGaPGec-SYz8w0h3wTTCKTTJK0hXM0l5nfr1CTSCdhqJlnI4F_9Kmez6vpaXj4Z9YU1YZEeOL64H97ZsrYSXFFd5QbsTRivYVXUzBRc5h6_voB6xmBqyB-UZWyCE4VMqjzjYz4zVHbd6hsIDHkeyMGL7JlHCsT9zxzTi0908Dvnn8mnATDSk3ijm-SDb7fIxyc0gltk5-yxWw1Eh-XafSH_ps3FbHZMp80dPmjvaeCnpkhiCYJtLAGn-C-WIs9mqHykc4_dwE03pwBoKdgm_nOgY-Uh7XFgETax0w6cSzfXLR2m0nS0aelqaWBPbCxqbLdN_pyf_T79mQxDFxIL2KRPHLeZqQzzupDCltZrwx0XurKABQDNMScdq6RwEJhZgGtGQ8CRWQuBpC1NZbMdstYuWr9LqAcwwxwou7I-N6kzPuemNo67Unid8glh44tXdmAkx8EYf9VYenarQFcKdaWiribk-8Mhd5GO4zXhKWrzQRCZtMMOsC812Jd6y74mJB9tQQ2gJIINOFXz2rWPRrtRsGAxC6Nbv1h1KuOsAEHJxN573N9XsoGXjTWY-2StX678AVm3933TLQ_DqvgP9b4SXA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiGNN%3A+Bipartite+graph+neural+network+with+attention+mechanism+for+solving+multiple+traveling+salesman+problems+in+urban+logistics&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Liang%2C+Haojian&rft.au=Wang%2C+Shaohua&rft.au=Li%2C+Huilai&rft.au=Zhou%2C+Liang&rft.date=2024-05-01&rft.issn=1569-8432&rft.volume=129&rft.spage=103863&rft_id=info:doi/10.1016%2Fj.jag.2024.103863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2024_103863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |