Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger
Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although...
Saved in:
| Published in: | Applied thermal engineering Vol. 123; no. C; pp. 1327 - 1344 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.08.2017
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 1359-4311, 1873-5606 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50≤Re≤2000, 5°≤α≤45° and 4.09≤lR/Dh≤32.73. The Nusselt number correlations are valid for 200≤Re≤2000, Pr≤1.0, 5°≤α≤45° and 4.09≤lR/Dh≤12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections. |
|---|---|
| AbstractList | Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50≤Re≤2000, 5°≤α≤45° and 4.09≤lR/Dh≤32.73. The Nusselt number correlations are valid for 200≤Re≤2000, Pr≤1.0, 5°≤α≤45° and 4.09≤lR/Dh≤12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections. Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50 ≤ Re ≤ 2000, 5° ≤ α ≤ 45° and 4.09 ≤ lR/Dh ≤ 32.73. The Nusselt number correlations are valid for 200 ≤ Re ≤ 2000, Pr ≤ 1.0, 5° ≤ α ≤ 45° and 4.09 ≤ lR/Dh ≤ 12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections. |
| Author | Sabharwall, Piyush Yoon, Su-Jong Chen, Minghui Sun, Xiaodong O'Brien, James |
| Author_xml | – sequence: 1 givenname: Su-Jong surname: Yoon fullname: Yoon, Su-Jong email: sujong.yoon@inl.gov organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States – sequence: 2 givenname: James surname: O'Brien fullname: O'Brien, James organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States – sequence: 3 givenname: Minghui surname: Chen fullname: Chen, Minghui organization: Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, United States – sequence: 4 givenname: Piyush surname: Sabharwall fullname: Sabharwall, Piyush organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States – sequence: 5 givenname: Xiaodong surname: Sun fullname: Sun, Xiaodong organization: Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, United States |
| BackLink | https://www.osti.gov/biblio/1550134$$D View this record in Osti.gov |
| BookMark | eNqNUU1v1DAUtFCRaBf-gwVcE-wkzofEBQoFpAoucLYezvOuV44dbGcL_TX8VJwsFzj1ZOt5Zjxv5opcOO-QkJeclZzx9tWxhHm26YBhAotuX1aMdyUTJa_FI3LJ-64uRMvai3yvxVA0NedPyFWMR8Z41XfNJfn9Dk9o_TyhSxTcSE9gzQjJeEe9pp-XGNEm6pbpO4YNoINR27MGlXygyoeAdmNEqvPAwmQcBKqtv6PG0YiTKZQJarF5em_297Cn6gDOoV3_mINxCUe6QUyiB4RE8eeK2GN4Sh5rsBGf_T135NvN-6_XH4vbLx8-Xb-5LVRTD6moALHXSnWCQwvAdMsHbBs28JpXQ9-1rGn7sRqhqkcFfVdhK5TGBvq-wkaLekeen3V9TEZGZRKqg_LZpEqSC8F43WTQizNoDv7HgjHJo1-Cy74kH-qeN8Oa-Y68PqNU8DEG1DKvOEH4JTmTa3HyKP8tTq7FSSZkrinT3_5Hz2a2fFMAYx8qcnMWwZzZyWBYV0KncDRh3Wj05mFCfwCPtccK |
| CitedBy_id | crossref_primary_10_1016_j_tsep_2020_100543 crossref_primary_10_3390_en15062099 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125982 crossref_primary_10_1016_j_applthermaleng_2018_10_027 crossref_primary_10_1016_j_applthermaleng_2024_122779 crossref_primary_10_1016_j_energy_2019_03_082 crossref_primary_10_1016_j_cep_2025_110168 crossref_primary_10_3390_en12030548 crossref_primary_10_1039_D4SE00257A crossref_primary_10_1016_j_rser_2021_111933 crossref_primary_10_1016_j_applthermaleng_2025_126455 crossref_primary_10_1016_j_tsep_2022_101430 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_045 crossref_primary_10_1016_j_cryogenics_2021_103415 crossref_primary_10_1016_j_icheatmasstransfer_2025_108765 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122434 crossref_primary_10_1155_2023_6444614 crossref_primary_10_1002_apj_2843 crossref_primary_10_1007_s11630_022_1675_9 crossref_primary_10_3390_en17051133 crossref_primary_10_1016_j_applthermaleng_2018_09_082 crossref_primary_10_1016_j_ijrefrig_2021_04_023 crossref_primary_10_3390_en14196056 crossref_primary_10_1016_j_applthermaleng_2022_118989 crossref_primary_10_1108_HFF_07_2021_0490 crossref_primary_10_1016_j_ijthermalsci_2020_106645 crossref_primary_10_1080_01457632_2021_1905322 crossref_primary_10_1016_j_applthermaleng_2019_02_131 crossref_primary_10_1016_j_supflu_2019_104560 crossref_primary_10_1016_j_applthermaleng_2022_119198 crossref_primary_10_1016_j_tsep_2019_100383 crossref_primary_10_3390_en15218205 crossref_primary_10_1016_j_ijthermalsci_2021_106831 crossref_primary_10_1016_j_applthermaleng_2020_116447 crossref_primary_10_1016_j_applthermaleng_2023_120321 crossref_primary_10_1016_j_rser_2024_115051 crossref_primary_10_1007_s11630_021_1490_8 crossref_primary_10_1016_j_applthermaleng_2021_116597 crossref_primary_10_1016_j_applthermaleng_2022_119741 crossref_primary_10_1007_s12206_025_0323_1 crossref_primary_10_1016_j_applthermaleng_2023_121346 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121089 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_025 crossref_primary_10_1016_j_pnucene_2022_104190 crossref_primary_10_1080_01457632_2020_1735779 crossref_primary_10_1016_j_enconman_2021_114029 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119272 crossref_primary_10_1016_j_ijheatfluidflow_2025_109953 crossref_primary_10_1016_j_ijthermalsci_2025_109678 crossref_primary_10_1002_aic_18695 crossref_primary_10_1016_j_matpr_2019_11_077 crossref_primary_10_1016_j_rser_2020_110290 crossref_primary_10_1016_j_supflu_2025_106537 crossref_primary_10_1016_j_rser_2020_110091 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120712 crossref_primary_10_1016_j_applthermaleng_2025_127681 crossref_primary_10_1016_j_ijheatfluidflow_2024_109395 crossref_primary_10_1016_j_applthermaleng_2022_119216 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118922 crossref_primary_10_1016_j_csite_2025_106446 crossref_primary_10_3390_en14144252 crossref_primary_10_1016_j_applthermaleng_2022_118406 crossref_primary_10_1016_j_applthermaleng_2023_120104 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125896 crossref_primary_10_1016_j_rser_2022_113044 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125179 crossref_primary_10_1002_er_7290 crossref_primary_10_1016_j_enconman_2019_112309 crossref_primary_10_1016_j_applthermaleng_2018_02_051 crossref_primary_10_1016_j_applthermaleng_2025_125478 crossref_primary_10_1080_01457632_2020_1834205 crossref_primary_10_1007_s11630_023_1911_y crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_031 crossref_primary_10_1016_j_applthermaleng_2024_122466 crossref_primary_10_1016_j_icheatmasstransfer_2024_108279 crossref_primary_10_1016_j_applthermaleng_2020_116108 crossref_primary_10_1016_j_energy_2019_01_148 crossref_primary_10_1002_ese3_70022 crossref_primary_10_1016_j_pnucene_2024_105333 crossref_primary_10_1016_j_est_2022_105777 |
| Cites_doi | 10.1016/j.expthermflusci.2007.06.006 10.1016/j.applthermaleng.2011.08.012 10.1007/s00231-010-0727-y 10.1016/j.enconman.2015.03.016 10.1016/j.applthermaleng.2016.05.033 10.3390/e17053438 10.1146/annurev.fluid.29.1.123 10.1080/00223131.2012.660012 10.1115/1.4004252 10.1016/j.applthermaleng.2016.07.149 10.6110/KJACR.2015.27.9.475 10.1007/s00231-013-1149-4 |
| ContentType | Journal Article |
| Copyright | 2017 Copyright Elsevier BV Aug 2017 |
| Copyright_xml | – notice: 2017 – notice: Copyright Elsevier BV Aug 2017 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 OTOTI |
| DOI | 10.1016/j.applthermaleng.2017.05.135 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5606 |
| EndPage | 1344 |
| ExternalDocumentID | 1550134 10_1016_j_applthermaleng_2017_05_135 S1359431116342740 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7TB 8FD FR3 KR7 AAIAV AALMO AAPBV ABPIF ABYKQ AJBFU OTOTI |
| ID | FETCH-LOGICAL-c439t-2aee8fcc751a6aa0f619e6409131298760468d2da23dca872e65cfe4a882e4f53 |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406564600123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Fri May 19 02:09:09 EDT 2023 Sun Oct 05 00:30:59 EDT 2025 Tue Nov 18 21:51:00 EST 2025 Sat Nov 29 07:07:48 EST 2025 Mon Oct 07 06:11:41 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-2aee8fcc751a6aa0f619e6409131298760468d2da23dca872e65cfe4a882e4f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Nuclear Energy (NE) |
| OpenAccessLink | https://www.osti.gov/biblio/1550134 |
| PQID | 1938149187 |
| PQPubID | 2045278 |
| PageCount | 18 |
| ParticipantIDs | osti_scitechconnect_1550134 proquest_journals_1938149187 crossref_primary_10_1016_j_applthermaleng_2017_05_135 crossref_citationtrail_10_1016_j_applthermaleng_2017_05_135 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2017_05_135 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: United Kingdom |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Meshram, Jaiswal, Khivsara, Ortega, Ho, Bapat, Dutta (b0085) 2016; 109 Ngo, Kato, Nikitin, Ishizuka (b0030) 2007; 32 (accessed on July 20, 2016). D. Southall, R.L. Pierres and S.J. Dewson, Design Considerations for Compact Heat Exchangers, Proceedings of ICAPP’08, June 8-12, Anaheim, CA, USA, 2008. S.K. Mylavarapu, Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility, Doctoral Dissertation, The Ohio State University, 2011. Lee, Kim (b0020) 2012; 49 Lee, Kim (b0025) 2013; 49 Ma, Li, Xu, Chen, Wang (b0080) 2015; 104 Kim (b0060) 2012 Berbish, Moawed, Ammar, Afifi (b0050) 2011; 47 Kurizenga, Anderson, Fatima, Corradini (b0040) 2011; 3 Kar (b0055) 2007 Kim, No (b0065) 2011; 31 Kwon, Choi, Choi (b0070) 2009; 21 INCONEL 617 Technical Bulletin, Publication Number SMC-029, Special Metals Corporation, Huntington, WV, 2005. Chen, Sun, Christensen, Skavdahl, Utgikar, Sabharwall (b0120) 2016; 108 Van Abel, Anderson, Corradini (b0090) 2011 Roma Fatima, Alan Kruizenga, Mark Anderson and Devesh Ranjan, Numerical Investigation of Thermal Hydraulic Behavior of Supercritical Carbon Dioxide in Compact Heat Exchangers, 2014 Supercritical CO2 Power Cycle Symposium, Sept. 9-10, Pittsburgh, PA, USA, 2014. Idelchik (b0095) 1996 Seo, Kim, Kim, Choi, Lee (b0075) 2015; 17 D. Southall and S.J. Dewson, Innovative Compact Heat Exchangers, Proceedings of ICAPP’10, June 13-17, San Diego, CA, USA, 2010. Sang-Moon Lee and Kwang-Yong Kim, A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger, Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, March 13-17, Honolulu, Hawaii, USA, 2011. Roache (b0110) 1997; 29 H. Song, J. Van Meter, S. Lomperski, D. Cho, H.Y. Kim and A.Tokuhiro, Experimental Investigations of a printed circuit heat exchanger for supercritical CO2 and water heat exchange, NTHAS5-N002, Nov. 26-29, Jeju, South Korea, 2006. National Institute of Standards and Technology, NIST Chemistry WebBook: NIST Standard Reference Database Number 69. Chen (10.1016/j.applthermaleng.2017.05.135_b0120) 2016; 108 Van Abel (10.1016/j.applthermaleng.2017.05.135_b0090) 2011 Roache (10.1016/j.applthermaleng.2017.05.135_b0110) 1997; 29 10.1016/j.applthermaleng.2017.05.135_b0015 Ma (10.1016/j.applthermaleng.2017.05.135_b0080) 2015; 104 10.1016/j.applthermaleng.2017.05.135_b0045 10.1016/j.applthermaleng.2017.05.135_b0100 Lee (10.1016/j.applthermaleng.2017.05.135_b0020) 2012; 49 10.1016/j.applthermaleng.2017.05.135_b0035 10.1016/j.applthermaleng.2017.05.135_b0010 Kar (10.1016/j.applthermaleng.2017.05.135_b0055) 2007 Berbish (10.1016/j.applthermaleng.2017.05.135_b0050) 2011; 47 Meshram (10.1016/j.applthermaleng.2017.05.135_b0085) 2016; 109 10.1016/j.applthermaleng.2017.05.135_b0005 10.1016/j.applthermaleng.2017.05.135_b0115 Kim (10.1016/j.applthermaleng.2017.05.135_b0065) 2011; 31 10.1016/j.applthermaleng.2017.05.135_b0105 Seo (10.1016/j.applthermaleng.2017.05.135_b0075) 2015; 17 Kim (10.1016/j.applthermaleng.2017.05.135_b0060) 2012 Idelchik (10.1016/j.applthermaleng.2017.05.135_b0095) 1996 Kurizenga (10.1016/j.applthermaleng.2017.05.135_b0040) 2011; 3 Lee (10.1016/j.applthermaleng.2017.05.135_b0025) 2013; 49 Ngo (10.1016/j.applthermaleng.2017.05.135_b0030) 2007; 32 Kwon (10.1016/j.applthermaleng.2017.05.135_b0070) 2009; 21 |
| References_xml | – reference: > (accessed on July 20, 2016). – reference: D. Southall and S.J. Dewson, Innovative Compact Heat Exchangers, Proceedings of ICAPP’10, June 13-17, San Diego, CA, USA, 2010. – reference: Sang-Moon Lee and Kwang-Yong Kim, A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger, Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, March 13-17, Honolulu, Hawaii, USA, 2011. – reference: INCONEL 617 Technical Bulletin, Publication Number SMC-029, Special Metals Corporation, Huntington, WV, 2005. – volume: 17 start-page: 3438 year: 2015 end-page: 3457 ident: b0075 article-title: Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers publication-title: Entropy – volume: 31 start-page: 4064 year: 2011 end-page: 4073 ident: b0065 article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations publication-title: Appl. Therm. Eng. – volume: 109 start-page: 861 year: 2016 end-page: 870 ident: b0085 article-title: Modeling and analysis of a printed circuit heat exchanger for supercritical CO publication-title: Appl. Therm. Eng. – volume: 104 start-page: 55 year: 2015 end-page: 66 ident: b0080 article-title: Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature publication-title: Energy Convers. Manage. – volume: 49 start-page: 343 year: 2012 end-page: 351 ident: b0020 article-title: Optimization of Zigzag Flow Channels of a Printed Circuit Heat Exchanger for Nuclear Power Plant Application publication-title: J. Nuc. Sci. Tech. – volume: 21 start-page: 475 year: 2009 end-page: 482 ident: b0070 article-title: Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers publication-title: Korean J. Air-Condition. Refrigerat. Eng. – volume: 108 year: 2016 ident: b0120 article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger publication-title: Appl. Therm. Eng. – volume: 29 start-page: 123 year: 1997 end-page: 160 ident: b0110 article-title: Quantification of uncertainty in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. – year: 1996 ident: b0095 article-title: Handbook of Hydraulic Resistance – reference: H. Song, J. Van Meter, S. Lomperski, D. Cho, H.Y. Kim and A.Tokuhiro, Experimental Investigations of a printed circuit heat exchanger for supercritical CO2 and water heat exchange, NTHAS5-N002, Nov. 26-29, Jeju, South Korea, 2006. – reference: National Institute of Standards and Technology, NIST Chemistry WebBook: NIST Standard Reference Database Number 69. < – year: 2012 ident: b0060 article-title: Experimental and numerical investigations of thermal-hydraulic characteristics for the design of a printed circuit heat exchanger (PCHE) in HTGRs – volume: 3 start-page: 031002 year: 2011 ident: b0040 article-title: Aaron towne devesh ranjan heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries publication-title: J. Therm. Sci. Eng. Appl. – volume: 47 start-page: 377 year: 2011 end-page: 384 ident: b0050 article-title: Heat Transfer and friction factor of turbulent flow through a horizontal semi-circular duct publication-title: Heat Mass Trans. – volume: 32 start-page: 560 year: 2007 end-page: 570 ident: b0030 article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with s-shaped and zigzag fins for carbon dioxide cycles publication-title: Exper. Therm. Fluid Sci. – reference: Roma Fatima, Alan Kruizenga, Mark Anderson and Devesh Ranjan, Numerical Investigation of Thermal Hydraulic Behavior of Supercritical Carbon Dioxide in Compact Heat Exchangers, 2014 Supercritical CO2 Power Cycle Symposium, Sept. 9-10, Pittsburgh, PA, USA, 2014. – year: 2007 ident: b0055 article-title: CFD Analysis of Printed Circuit Heat Exchanger – reference: D. Southall, R.L. Pierres and S.J. Dewson, Design Considerations for Compact Heat Exchangers, Proceedings of ICAPP’08, June 8-12, Anaheim, CA, USA, 2008. – volume: 49 start-page: 1021 year: 2013 end-page: 1028 ident: b0025 article-title: comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations publication-title: Heat Mass Trans. – year: 2011 ident: b0090 article-title: Numerical investigation of pressure drop and local heat transfer of supercritical CO publication-title: in printed circuit heat exchanger, supercritical CO – reference: S.K. Mylavarapu, Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility, Doctoral Dissertation, The Ohio State University, 2011. – ident: 10.1016/j.applthermaleng.2017.05.135_b0015 – volume: 32 start-page: 560 year: 2007 ident: 10.1016/j.applthermaleng.2017.05.135_b0030 article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with s-shaped and zigzag fins for carbon dioxide cycles publication-title: Exper. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2007.06.006 – volume: 31 start-page: 4064 year: 2011 ident: 10.1016/j.applthermaleng.2017.05.135_b0065 article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.08.012 – ident: 10.1016/j.applthermaleng.2017.05.135_b0100 – volume: 47 start-page: 377 year: 2011 ident: 10.1016/j.applthermaleng.2017.05.135_b0050 article-title: Heat Transfer and friction factor of turbulent flow through a horizontal semi-circular duct publication-title: Heat Mass Trans. doi: 10.1007/s00231-010-0727-y – volume: 104 start-page: 55 year: 2015 ident: 10.1016/j.applthermaleng.2017.05.135_b0080 article-title: Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.03.016 – volume: 109 start-page: 861 issue: Part B year: 2016 ident: 10.1016/j.applthermaleng.2017.05.135_b0085 article-title: Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.033 – year: 2011 ident: 10.1016/j.applthermaleng.2017.05.135_b0090 article-title: Numerical investigation of pressure drop and local heat transfer of supercritical CO – year: 1996 ident: 10.1016/j.applthermaleng.2017.05.135_b0095 – ident: 10.1016/j.applthermaleng.2017.05.135_b0045 – year: 2007 ident: 10.1016/j.applthermaleng.2017.05.135_b0055 – volume: 17 start-page: 3438 year: 2015 ident: 10.1016/j.applthermaleng.2017.05.135_b0075 article-title: Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers publication-title: Entropy doi: 10.3390/e17053438 – ident: 10.1016/j.applthermaleng.2017.05.135_b0115 – volume: 29 start-page: 123 year: 1997 ident: 10.1016/j.applthermaleng.2017.05.135_b0110 article-title: Quantification of uncertainty in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.123 – ident: 10.1016/j.applthermaleng.2017.05.135_b0005 – volume: 49 start-page: 343 issue: 3 year: 2012 ident: 10.1016/j.applthermaleng.2017.05.135_b0020 article-title: Optimization of Zigzag Flow Channels of a Printed Circuit Heat Exchanger for Nuclear Power Plant Application publication-title: J. Nuc. Sci. Tech. doi: 10.1080/00223131.2012.660012 – volume: 3 start-page: 031002 issue: 3 year: 2011 ident: 10.1016/j.applthermaleng.2017.05.135_b0040 article-title: Aaron towne devesh ranjan heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4004252 – volume: 108 year: 2016 ident: 10.1016/j.applthermaleng.2017.05.135_b0120 article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.149 – ident: 10.1016/j.applthermaleng.2017.05.135_b0010 – ident: 10.1016/j.applthermaleng.2017.05.135_b0105 – ident: 10.1016/j.applthermaleng.2017.05.135_b0035 – volume: 21 start-page: 475 issue: 9 year: 2009 ident: 10.1016/j.applthermaleng.2017.05.135_b0070 article-title: Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers publication-title: Korean J. Air-Condition. Refrigerat. Eng. doi: 10.6110/KJACR.2015.27.9.475 – volume: 49 start-page: 1021 issue: 7 year: 2013 ident: 10.1016/j.applthermaleng.2017.05.135_b0025 article-title: comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations publication-title: Heat Mass Trans. doi: 10.1007/s00231-013-1149-4 – year: 2012 ident: 10.1016/j.applthermaleng.2017.05.135_b0060 |
| SSID | ssj0012874 |
| Score | 2.533021 |
| Snippet | Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1327 |
| SubjectTerms | Bend radius Channels Computational fluid dynamics Fluid dynamics Fluid flow Friction Friction factor Heat exchangers Heat transfer Laminar flow Least squares method Mathematical models Nusselt number Pressure loss Printed circuits Radius of curvature Temperature effects |
| Title | Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2017.05.135 https://www.proquest.com/docview/1938149187 https://www.osti.gov/biblio/1550134 |
| Volume | 123 |
| WOSCitedRecordID | wos000406564600123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFCE4IJ4itKA9VFwio9rr9UMcUEGpoIoCEinKzVrb68RV6oTYaUN_DT-OH8KMd_2IoCgcuFjRxuskni-z346_mSHk0GeCOyHjRmwyYdgsZoZnR57BWRhHJuPCTMoirkN3NPImE_9zp_OzyoW5nLtZ5m02_vK_mhrGwNiYOvsP5q4vCgPwGowORzA7HHcyfEsGVD4ZgGuncU0MR-s8l_OirzqBlCdgpyClOCx77_QjbNhRSeRQhQigwazdfjJfXGF8JJcXqRGlKyVhvU6n12JaZhBnsmS2GCtEIluekhZIRou-3Ogc4zYdrjgwstALAItsqiM27kjpAr6sjdNFM4winXdYo7mW-jZCBakTArLpbJ3WISQRzsTqSuiezen3dT5rhzxgGa0EdzoOV-fifG15bsZ9wJr23FKNeS4zgNI5W-7eYi2HDZtx948riQpqnL9GHYG-CXAPUAtYlno1VZGV7QLeo0_BydlwGIwHk_Gr5TcDe5uhBkA3erlF9iyX-16X7B1_HExO66dd2HOgDAzon3CHHDY6xJu_wE1UqruA1eE3blESpvEDcl_vdOixQuhD0pHZI3KvVf_yMfnRwioFKNIGq3SRUI1VqrBanlBhlSqs0jZWKWCVaqxSxCpNM7qFVaqwSjVW8TM0VqnGKkWs0hqrT8jZyWD8_oOhW4YYETDrwrCElF4SRS43hSPEUeKYvnRsLH4LxBZW_iPb8WIrFhaLI-G5lnR4lEhbwEZT2glnT0k3W2TyGaGmLaXNmQgTycF7yZABs5auGwKrxObYPfKmuvtBpOvpY1uXeVAJJ8-DbdsFaLvgiAdgux7h9eylqiuz47y3laEDzZEV9w0AuDteYR_xgbOxTHSEejqYjqEKk9k9clDBJtBOLQ9gk-eZtg9_p-d_f3uf3G3-rwekW6zW8gW5HV0Wab56qWH_C9HU_xk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+Nusselt+number+and+friction+factor+correlations+for+laminar+flow+in+semi-circular+zigzag+channel+of+printed+circuit+heat+exchanger&rft.jtitle=Applied+thermal+engineering&rft.au=Yoon%2C+Su-Jong&rft.au=O%27Brien%2C+James&rft.au=Chen%2C+Minghui&rft.au=Sabharwall%2C+Piyush&rft.date=2017-08-01&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=123&rft.spage=1327&rft_id=info:doi/10.1016%2Fj.applthermaleng.2017.05.135&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |