3DPointCaps++: Learning 3D Representations with Capsule Networks
We present 3DPointCaps++ for learning robust, flexible and generalizable 3D object representations without requiring heavy annotation efforts or supervision. Unlike conventional 3D generative models, our algorithm aims for building a structured latent space where certain factors of shape variations,...
Uložené v:
| Vydané v: | International journal of computer vision Ročník 130; číslo 9; s. 2321 - 2336 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present
3DPointCaps++
for learning robust, flexible and generalizable 3D object representations without requiring heavy annotation efforts or supervision. Unlike conventional 3D generative models, our algorithm aims for building a structured latent space where certain factors of shape variations, such as object parts, can be disentangled into independent sub-spaces. Our novel decoder then acts on these individual latent sub-spaces (i.e. capsules) using deconvolution operators to reconstruct 3D points in a self-supervised manner. We further introduce a cluster loss ensuring that the points reconstructed by a single capsule remain local and do not spread across the object uncontrollably. These contributions allow our network to tackle the challenging tasks of part segmentation, part interpolation/replacement as well as correspondence estimation across rigid / non-rigid shape, and across / within category. Our extensive evaluations on ShapeNet objects and human scans demonstrate that our network can learn generic representations that are robust and useful in many applications. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by Akihiro Sugimoto. |
| ISSN: | 0920-5691 1573-1405 |
| DOI: | 10.1007/s11263-022-01632-6 |