Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 31; číslo 29; s. e1901300 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.07.2019
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.
Gate‐tunable and multidirection‐switchable memristive phenomena in a van der Waals ferroelectric α‐In2Se3 are demonstrated. The planar memristor exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the out‐of‐plane (OOP) (or in‐plane (IP)) resistance state directly by an IP (or OOP) programming pulse. |
|---|---|
| AbstractList | Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In
Se
, a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In
Se
exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In
Se
memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 10
in.
and a resistance-switching ratio of well over 10
. A multidirectionally operated α-In
Se
memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In
Se
memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In2 Se3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In2 Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In2 Se3 memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.-2 and a resistance-switching ratio of well over 103 . A multidirectionally operated α-In2 Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In2 Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In2 Se3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In2 Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In2 Se3 memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.-2 and a resistance-switching ratio of well over 103 . A multidirectionally operated α-In2 Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In2 Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Gate‐tunable and multidirection‐switchable memristive phenomena in a van der Waals ferroelectric α‐In2Se3 are demonstrated. The planar memristor exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the out‐of‐plane (OOP) (or in‐plane (IP)) resistance state directly by an IP (or OOP) programming pulse. Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In 2 Se 3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In 2 Se 3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In 2 Se 3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 10 9 in. −2 and a resistance‐switching ratio of well over 10 3 . A multidirectionally operated α‐In 2 Se 3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In 2 Se 3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. |
| Author | He, Jr‐Hau Zhang, Xixiang Han, Ali Huang, Jing‐Kai Zhang, Junwei Liu, Zhixiong Li, Lain‐Jong He, Xin Hu, Weijin Xue, Fei Retamal, José Ramón Durán Tung, Vincent |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0001-9039-7088 surname: Xue fullname: Xue, Fei organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Xin surname: He fullname: He, Xin organization: King Abdullah University of Science and Technology – sequence: 3 givenname: José Ramón Durán surname: Retamal fullname: Retamal, José Ramón Durán organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Ali surname: Han fullname: Han, Ali organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: King Abdullah University of Science and Technology – sequence: 6 givenname: Zhixiong surname: Liu fullname: Liu, Zhixiong organization: King Abdullah University of Science and Technology – sequence: 7 givenname: Jing‐Kai surname: Huang fullname: Huang, Jing‐Kai organization: King Abdullah University of Science and Technology – sequence: 8 givenname: Weijin surname: Hu fullname: Hu, Weijin organization: Chinese Academy of Sciences (CAS) – sequence: 9 givenname: Vincent surname: Tung fullname: Tung, Vincent organization: King Abdullah University of Science and Technology – sequence: 10 givenname: Jr‐Hau surname: He fullname: He, Jr‐Hau email: jrhau.he@kaust.edu.sa organization: King Abdullah University of Science and Technology – sequence: 11 givenname: Lain‐Jong surname: Li fullname: Li, Lain‐Jong email: li.l@unsw.edu.au organization: University of New South Wales – sequence: 12 givenname: Xixiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xixiang email: xixiang.zhang@kaust.edu.sa organization: King Abdullah University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31148294$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFq3DAQhkVJaDZprz0WQy-5eDOSJa11XJImLWRpoWl7FLPyiCjYcirZDbnlEfKMeZJ6u0kLgdKTYOb7fsT8-2wn9pEYe8NhzgHEETYdzgVwA7wCeMFmXAleSjBqh83AVKo0WtZ7bD_nKwAwGvRLtldxLmth5Iw1ZzjQw939xRhx3VKBsSlWYzuEJiRyQ-jjtPxyEwZ3-Xu_oi6FPISfVHy-pNh3FLEIscDiG8bihFLxHbHNxSml1FM7RaTgXrFdPw3p9eN7wL6evr84_lCefzr7eLw8L52sDJTregG1b7QxwhvdCKUditqjkaS4RwfCeRLar10jKqG5d1rXC66k0guFmlcH7HCbe536HyPlwXYhO2pbjNSP2QpRVbXmRokJffcMverHFKffTZRWWoCWG-rtIzWuO2rsdQodplv7dL8JkFvApT7nRN66MODmbEPC0FoOdlOT3dRk_9Q0afNn2lPyPwWzFW5CS7f_oe3yZLX86_4C_86lqA |
| CitedBy_id | crossref_primary_10_1016_j_isci_2023_106673 crossref_primary_10_1038_s41467_024_54841_7 crossref_primary_10_1038_s41467_021_27617_6 crossref_primary_10_1103_j7t5_1t4c crossref_primary_10_1016_j_scib_2021_06_020 crossref_primary_10_1038_s41467_025_61756_4 crossref_primary_10_1063_5_0098827 crossref_primary_10_1002_brx2_24 crossref_primary_10_1002_smll_202300468 crossref_primary_10_1038_s41928_019_0338_7 crossref_primary_10_1063_5_0147012 crossref_primary_10_1002_advs_202303032 crossref_primary_10_1002_adfm_202307901 crossref_primary_10_1088_1674_1056_aba603 crossref_primary_10_1021_acs_chemmater_5c00695 crossref_primary_10_1063_5_0202871 crossref_primary_10_1002_aelm_202000641 crossref_primary_10_1016_j_nanoen_2024_109646 crossref_primary_10_1021_acsami_5c02897 crossref_primary_10_1063_5_0127880 crossref_primary_10_1063_5_0147013 crossref_primary_10_1002_aelm_202200413 crossref_primary_10_1063_1_5129447 crossref_primary_10_1002_adma_202005620 crossref_primary_10_1016_j_vacuum_2024_113275 crossref_primary_10_1021_acsnano_5c02397 crossref_primary_10_1038_s41563_024_01986_x crossref_primary_10_1002_adma_202007081 crossref_primary_10_1002_adma_202205402 crossref_primary_10_1002_adfm_202009999 crossref_primary_10_1007_s11433_022_2056_1 crossref_primary_10_1039_C9NR08063E crossref_primary_10_1002_inf2_12341 crossref_primary_10_1002_smll_202105599 crossref_primary_10_1039_D0NR06872A crossref_primary_10_3390_solids5010004 crossref_primary_10_1016_j_mee_2025_112354 crossref_primary_10_1063_5_0190609 crossref_primary_10_1088_1361_6463_ad865f crossref_primary_10_1016_j_nanoen_2024_109861 crossref_primary_10_1063_5_0079535 crossref_primary_10_1016_j_chip_2025_100129 crossref_primary_10_1002_pi_5980 crossref_primary_10_1021_acs_nanolett_5c02425 crossref_primary_10_1002_adma_202416897 crossref_primary_10_1007_s40843_025_3424_6 crossref_primary_10_1016_j_nanoen_2021_105947 crossref_primary_10_1063_5_0090120 crossref_primary_10_1063_5_0255501 crossref_primary_10_1002_aelm_202101406 crossref_primary_10_1002_aisy_202100198 crossref_primary_10_1039_D1MH00446H crossref_primary_10_1063_5_0098647 crossref_primary_10_3390_nano14201638 crossref_primary_10_1016_j_matt_2022_05_021 crossref_primary_10_1088_1361_6528_ad4652 crossref_primary_10_1063_5_0019555 crossref_primary_10_1088_2053_1583_ac1ada crossref_primary_10_1002_smll_202203611 crossref_primary_10_1016_j_cej_2025_166513 crossref_primary_10_1002_advs_202413808 crossref_primary_10_1021_acsami_5c13157 crossref_primary_10_1002_adfm_202308129 crossref_primary_10_1002_smm2_1020 crossref_primary_10_3390_nano15020109 crossref_primary_10_1016_j_mseb_2022_115829 crossref_primary_10_1063_5_0197542 crossref_primary_10_1557_s43577_023_00599_0 crossref_primary_10_1039_D0MH01863E crossref_primary_10_1002_smll_202307346 crossref_primary_10_1038_s41524_022_00953_x crossref_primary_10_1007_s12274_022_4206_9 crossref_primary_10_1039_D1NR00318F crossref_primary_10_1002_adma_202004469 crossref_primary_10_1063_5_0165837 crossref_primary_10_1063_5_0117355 crossref_primary_10_1002_adma_202008709 crossref_primary_10_1002_smll_202409004 crossref_primary_10_1038_s41467_023_41991_3 crossref_primary_10_1002_adma_202201880 crossref_primary_10_1039_C9RA06566K crossref_primary_10_3390_coatings12020122 crossref_primary_10_1063_5_0177899 crossref_primary_10_1088_1674_1056_ad8db4 crossref_primary_10_1002_advs_202410851 crossref_primary_10_1002_adma_202400332 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1002_aelm_202300108 crossref_primary_10_1016_j_cossms_2024_101178 crossref_primary_10_26599_NR_2025_94907425 crossref_primary_10_1063_5_0051394 crossref_primary_10_1002_adma_202108025 crossref_primary_10_1016_j_mtphys_2024_101607 crossref_primary_10_1063_5_0028079 crossref_primary_10_1002_smll_202304173 crossref_primary_10_1038_s41928_022_00847_2 crossref_primary_10_1088_2053_1583_ac6191 crossref_primary_10_1038_s41467_023_38445_1 crossref_primary_10_1038_s41928_020_0441_9 crossref_primary_10_1016_j_revmat_2025_100059 crossref_primary_10_1038_s41467_020_16291_9 crossref_primary_10_1109_TED_2022_3184621 crossref_primary_10_1002_adma_202106886 crossref_primary_10_1002_adma_202108826 crossref_primary_10_1002_ijch_202100112 crossref_primary_10_1109_TDMR_2022_3153961 crossref_primary_10_1109_TED_2021_3059976 crossref_primary_10_1002_aelm_202100609 crossref_primary_10_1002_smll_202412761 crossref_primary_10_1016_j_matt_2022_10_017 crossref_primary_10_1016_j_mtelec_2023_100080 crossref_primary_10_1063_5_0116445 crossref_primary_10_1038_s41563_024_02082_w crossref_primary_10_1063_5_0062857 crossref_primary_10_1038_s41699_021_00261_w crossref_primary_10_1103_PhysRevApplied_21_044033 crossref_primary_10_1002_smll_202405459 crossref_primary_10_1063_5_0191188 crossref_primary_10_1002_adfm_202306682 crossref_primary_10_1002_advs_202406242 crossref_primary_10_1038_s41565_020_0724_3 crossref_primary_10_1039_D1NR03807A crossref_primary_10_1063_5_0130587 crossref_primary_10_1002_adfm_202304139 crossref_primary_10_1002_advs_202100713 crossref_primary_10_1126_sciadv_adr5337 crossref_primary_10_1002_adma_202005098 crossref_primary_10_1088_2634_4386_ad7755 crossref_primary_10_1063_5_0131838 crossref_primary_10_1063_5_0035764 crossref_primary_10_1002_admt_202300203 crossref_primary_10_1007_s11432_025_4432_x crossref_primary_10_1063_5_0260065 crossref_primary_10_1088_1361_6641_ace5cc crossref_primary_10_1039_D1RA07728G crossref_primary_10_1038_s41699_024_00523_3 crossref_primary_10_1038_s41467_020_20257_2 crossref_primary_10_1002_pssr_202300479 crossref_primary_10_1007_s40843_019_1212_x crossref_primary_10_1063_5_0149503 crossref_primary_10_1021_acsami_5c01496 |
| Cites_doi | 10.1038/ncomms14956 10.1103/PhysRevLett.120.227601 10.1002/adma.200900822 10.1021/nl802497e 10.1038/nmat3649 10.1038/am.2017.142 10.1038/nmat3415 10.1021/acs.nanolett.5b02523 10.1021/nl302912t 10.1063/1.4901072 10.1021/acsnano.8b02152 10.1021/nn2024557 10.1038/nnano.2012.240 10.1109/TED.2016.2630925 10.1021/acs.nanolett.7b02198 10.1021/nn405037s 10.1038/ncomms14736 10.1038/ncomms5289 10.1038/nature25747 10.1109/TMAG.2004.842032 10.1109/TED.2011.2147791 10.1039/C8MH00082D 10.1039/C7NR02461D 10.1021/acs.inorgchem.8b01950 10.1063/1.5038037 10.1002/adma.201704908 10.1038/nnano.2017.83 10.1126/sciadv.aar7720 10.1021/nl904092h 10.1063/1.2793505 10.1126/science.1168636 10.1039/C8NR04422H 10.1002/adfm.201803738 10.1021/acs.nanolett.7b04852 10.1038/ncomms12357 10.1038/nmat4135 10.1038/nnano.2011.213 10.1107/S0021889879012863 10.1063/1.3589814 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201901300 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 31148294 10_1002_adma_201901300 ADMA201901300 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: CRF‐2015‐2634‐CRG4; CRF‐2016‐2996‐CRG5 – fundername: King Abdullah University of Science and Technology grantid: CRF-2015-2634-CRG4 – fundername: King Abdullah University of Science and Technology grantid: CRF-2016-2996-CRG5 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4390-b8708fd6992f96d256ca28fa94e51fac02cfe26fbcd23261fc66871545675a613 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 178 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477975900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 19:34:29 EDT 2025 Mon Jul 14 08:56:45 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Sat Nov 29 07:20:00 EST 2025 Tue Nov 18 22:42:31 EST 2025 Wed Jan 22 16:39:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | memristors ferroelectrics multidirectional programming gate tunability |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4390-b8708fd6992f96d256ca28fa94e51fac02cfe26fbcd23261fc66871545675a613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3478-6414 0000-0001-9039-7088 |
| PMID | 31148294 |
| PQID | 2265620642 |
| PQPubID | 2045203 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2233861952 proquest_journals_2265620642 pubmed_primary_31148294 crossref_citationtrail_10_1002_adma_201901300 crossref_primary_10_1002_adma_201901300 wiley_primary_10_1002_adma_201901300_ADMA201901300 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 120 2017; 64 2015; 15 2010; 10 2015; 14 2017; 8 2018; 28 1979; 12 2009; 21 2005; 41 2007; 91 2011; 98 2008; 8 2011; 58 2013; 8 2012; 12 2012; 11 2017; 9 2014; 105 2018; 18 2016; 7 2014; 5 2018; 5 2018; 4 2017; 17 2013; 12 2018; 113 2017; 12 2018; 554 2018; 30 2018; 12 2012; 6 2012; 7 2014; 8 2018; 10 2009; 324 2018; 57 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
| References_xml | – volume: 8 start-page: 14956 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 1297 year: 2010 publication-title: Nano Lett. – volume: 5 start-page: 4289 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 860 year: 2012 publication-title: Nat. Mater. – volume: 41 start-page: 1034 year: 2005 publication-title: IEEE Trans. Magn. – volume: 57 start-page: 11775 year: 2018 publication-title: Inorg. Chem. – volume: 9 start-page: 8427 year: 2017 publication-title: Nanoscale – volume: 7 start-page: 12357 year: 2016 publication-title: Nat. Commun. – volume: 21 start-page: 3754 year: 2009 publication-title: Adv. Mater. – volume: 15 start-page: 7853 year: 2015 publication-title: Nano Lett. – volume: 12 start-page: 4976 year: 2018 publication-title: ACS Nano – volume: 12 start-page: 617 year: 2013 publication-title: Nat. Mater. – volume: 105 start-page: 182101 year: 2014 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 3973 year: 2008 publication-title: Nano Lett. – volume: 98 start-page: 192901 year: 2011 publication-title: Appl. Phys. Lett. – volume: 120 start-page: 227601 year: 2018 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1704908 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 14885 year: 2018 publication-title: Nanoscale – volume: 324 start-page: 63 year: 2009 publication-title: Science – volume: 8 start-page: 514 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 13 year: 2013 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 1253 year: 2018 publication-title: Nano Lett. – volume: 12 start-page: 5697 year: 2012 publication-title: Nano Lett. – volume: 12 start-page: 784 year: 2017 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 101 year: 2012 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 416 year: 1979 publication-title: J. Appl. Crystallogr. – volume: 58 start-page: 2729 year: 2011 publication-title: IEEE Trans. Electron Devices – volume: 9 year: 2017 publication-title: NPG Asia Mater. – volume: 28 start-page: 1803738 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 521 year: 2018 publication-title: Mater. Horiz. – volume: 17 start-page: 5508 year: 2017 publication-title: Nano Lett. – volume: 91 start-page: 133119 year: 2007 publication-title: Appl. Phys. Lett. – volume: 554 start-page: 500 year: 2018 publication-title: Nature – volume: 64 start-page: 312 year: 2017 publication-title: IEEE Trans. Electron Devices – volume: 113 start-page: 043102 year: 2018 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 14736 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: eaar7720 year: 2018 publication-title: Sci. Adv. – volume: 14 start-page: 199 year: 2015 publication-title: Nat. Mater. – volume: 6 start-page: 74 year: 2012 publication-title: ACS Nano – ident: e_1_2_5_28_1 doi: 10.1038/ncomms14956 – ident: e_1_2_5_21_1 doi: 10.1103/PhysRevLett.120.227601 – ident: e_1_2_5_32_1 doi: 10.1002/adma.200900822 – ident: e_1_2_5_33_1 doi: 10.1021/nl802497e – ident: e_1_2_5_9_1 doi: 10.1038/nmat3649 – ident: e_1_2_5_35_1 doi: 10.1038/am.2017.142 – ident: e_1_2_5_6_1 doi: 10.1038/nmat3415 – ident: e_1_2_5_19_1 doi: 10.1021/acs.nanolett.5b02523 – ident: e_1_2_5_7_1 doi: 10.1021/nl302912t – ident: e_1_2_5_17_1 doi: 10.1063/1.4901072 – ident: e_1_2_5_24_1 doi: 10.1021/acsnano.8b02152 – ident: e_1_2_5_36_1 doi: 10.1021/nn2024557 – ident: e_1_2_5_3_1 doi: 10.1038/nnano.2012.240 – ident: e_1_2_5_4_1 doi: 10.1109/TED.2016.2630925 – ident: e_1_2_5_27_1 doi: 10.1021/acs.nanolett.7b02198 – ident: e_1_2_5_20_1 doi: 10.1021/nn405037s – ident: e_1_2_5_10_1 doi: 10.1038/ncomms14736 – ident: e_1_2_5_1_1 doi: 10.1038/ncomms5289 – ident: e_1_2_5_18_1 doi: 10.1038/nature25747 – ident: e_1_2_5_29_1 doi: 10.1109/TMAG.2004.842032 – ident: e_1_2_5_38_1 doi: 10.1109/TED.2011.2147791 – ident: e_1_2_5_11_1 doi: 10.1039/C8MH00082D – ident: e_1_2_5_12_1 doi: 10.1039/C7NR02461D – ident: e_1_2_5_22_1 doi: 10.1021/acs.inorgchem.8b01950 – ident: e_1_2_5_13_1 doi: 10.1063/1.5038037 – ident: e_1_2_5_34_1 doi: 10.1002/adma.201704908 – ident: e_1_2_5_5_1 doi: 10.1038/nnano.2017.83 – ident: e_1_2_5_14_1 doi: 10.1126/sciadv.aar7720 – ident: e_1_2_5_37_1 doi: 10.1021/nl904092h – ident: e_1_2_5_30_1 doi: 10.1063/1.2793505 – ident: e_1_2_5_39_1 doi: 10.1126/science.1168636 – ident: e_1_2_5_16_1 doi: 10.1039/C8NR04422H – ident: e_1_2_5_26_1 doi: 10.1002/adfm.201803738 – ident: e_1_2_5_25_1 doi: 10.1021/acs.nanolett.7b04852 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms12357 – ident: e_1_2_5_2_1 doi: 10.1038/nmat4135 – ident: e_1_2_5_8_1 doi: 10.1038/nnano.2011.213 – ident: e_1_2_5_23_1 doi: 10.1107/S0021889879012863 – ident: e_1_2_5_31_1 doi: 10.1063/1.3589814 |
| SSID | ssj0009606 |
| Score | 2.639778 |
| Snippet | Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1901300 |
| SubjectTerms | Ferroelectric materials Ferroelectricity ferroelectrics gate tunability Logic circuits Materials science Memory devices Memristors multidirectional programming Photoelectric effect Photoelectric emission Polarization Resistance Switching Synapses |
| Title | Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901300 https://www.ncbi.nlm.nih.gov/pubmed/31148294 https://www.proquest.com/docview/2265620642 https://www.proquest.com/docview/2233861952 |
| Volume | 31 |
| WOSCitedRecordID | wos000477975900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAH9qVsMhISJ4vUTZz4WFEqDoAQa2-R49iiEqQopXDlE_hGvoSxkwYqhJDglsiTxPLMeN7Y8RuAPe6HqUY7oZbsjaJRJFRinKUYi7mK0tD3m4krNhGenUXdrjj_coq_4IeoFtysZ7j52jq4TAYHn6ShMnW8QTagNT1M2qcYGq9fg6n2Ref65JN4l7v6mna_jwruRyPiRo8djL9hPDB9Q5vj4NVFn878__u9AHMl8iStwlQWYUJnSzD7hY9wGVK7lvb--nY1dCeqiMxS4k7oFoEPVYiNly891LRrP9UPbo541uT8TmeWzEGSXkYkuZEZaeuc3Eo0b9LRed4vCu701Apcd46uDo9pWYaBKkQrHk3QpSOTciGYETxFjKQki4wUvg4aRiqPKaMZN4lKEZ7xhlGcYxpmoVkYSIQLq1DL-pleByJFEHqJMQqBIhoJlywJtAiUxA9oHJ460JEOYlVylNtSGfdxwa7MYjt6cTV6ddiv5B8Ldo4fJbdGKo1LLx3ECD0R_tkUrA67VTP6l900kZnuD60MJvGYZQYos1aYQvWppk0mmfDrwJzGf-lD3Gqftqq7jb88tAkz9rr4X3gLak_5UG_DtHp-6g3yHZgMu9FO6QEfmwwEkw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9NZRLwsA0GrBsDIyHtySK4iRM_VusqJtoKbeXPW-Q4tqgE6RQoe-Uj8Bn3SXbnpGHVNE1CPCZ2Yst35_ud__wOYF-GcW5RTziRvXFUioxr9LMcfbE0SR6HYSfzySbi0Si5uFAn9WlCugtT8UM0C25kGX6-JgOnBemDR9ZQnXviIPJonQCj9qUQdSlqwVLvW_908Mi8K32CTdrw40qGyZy5MRAHi39Y9Ex_wc1F9OrdT__1M3T8DbyqsSfrVsqyBi9ssQ6rfzASvoWcVtN-3T-MZ_5OFdNFzvwd3cr1oRCx8PvPCcralw_ttZ8l7iw7ubQF0TloNimYZme6YD1bsnONCs76tiynVcqdidmA0_6X8ecjXidi4AbxSsAzNOrE5VIp4ZTMESUZLRKnVWijQ6dNIIyzQrrM5AjQ5KEzUmIgRuAsjjQChk1oFdPCvgOmVRQHmXMGoSKqidQii6yKjMYGLA5PG_hcCKmpWcopWcZVWvEri5RGL21Grw2fmvo_Kn6Of9bcnss0re30JkXwiQCQgrA27DXFaGG0baILO51RHQzjMc6MsM5WpQtNUx0KJ4UK2yC8yP_Th7TbG3abp_dP-WgXlo_Gw0E6-Do6_gAr9L46PbwNrdtyZj_CS3N3O7kpd2pD-A0W_Qeb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9N3YTgAQZsUOjASEg8WU3dxIkfK0rEtLaqoGN7ixz_0SpBOmVreeUj7DPuk3B20pRqQkgTj4md2PLd-X7nP78DeM_DWBvUE-rI3igqRU4l-lmKvpirRMdh2M99sol4MknOz8W0Pk3o7sJU_BDNgpuzDD9fOwM3l9p2N6yhUnviIOfR-gFG7bthJDja5u7wS3o62jDvcp9g0234UcHDZM3cGLDu9h-2PdMduLmNXr37SZ_8h47vw-Mae5JBpSxPYccUz-DRH4yEz0G71bTbXzezpb9TRWShib-jW7k-FCIWfv05R1n78rH54WeJlSHTC1M4OgdJ5gWR5JssyNCU5EyigpPUlOWiSrkzVwdwmn6affxM60QMVCFeCWiORp1YzYVgVnCNKElJllgpQhP1rFQBU9YwbnOlEaDxnlWcYyDmwFkcSQQMh9AqFoV5CUSKKA5yaxVCRVQTLlkeGREpiQ0YHJ420LUQMlWzlLtkGd-zil-ZZW70smb02vChqX9Z8XP8tWZnLdOsttOrDMEnAkAXhLXhXVOMFua2TWRhFktXB8N4jDMjrPOi0oWmqb4LJ5kI28C8yP_Rh2wwHA-ap1f3-egtPJgO02x0PDl5DQ_d6-rwcAda1-XSHMGeWl3Pr8o3tR38BpV2BxY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-Tunable+and+Multidirection-Switchable+Memristive+Phenomena+in+a+Van+Der+Waals+Ferroelectric&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xue%2C+Fei&rft.au=He%2C+Xin&rft.au=Retamal%2C+Jos%C3%A9+Ram%C3%B3n+Dur%C3%A1n&rft.au=Han%2C+Ali&rft.date=2019-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=29&rft.spage=e1901300&rft_id=info:doi/10.1002%2Fadma.201901300&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |