Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric

Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 31; číslo 29; s. e1901300 - n/a
Hlavní autoři: Xue, Fei, He, Xin, Retamal, José Ramón Durán, Han, Ali, Zhang, Junwei, Liu, Zhixiong, Huang, Jing‐Kai, Hu, Weijin, Tung, Vincent, He, Jr‐Hau, Li, Lain‐Jong, Zhang, Xixiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.07.2019
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Gate‐tunable and multidirection‐switchable memristive phenomena in a van der Waals ferroelectric α‐In2Se3 are demonstrated. The planar memristor exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the out‐of‐plane (OOP) (or in‐plane (IP)) resistance state directly by an IP (or OOP) programming pulse.
AbstractList Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In Se , a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In Se exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In Se memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 10 in. and a resistance-switching ratio of well over 10 . A multidirectionally operated α-In Se memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In Se memristors suggest opportunities for future logic circuits and complex neuromorphic computing.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In2 Se3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In2 Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In2 Se3 memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.-2 and a resistance-switching ratio of well over 103 . A multidirectionally operated α-In2 Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In2 Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α-In2 Se3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in-plane (IP) polarization of α-In2 Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance-switching ratio. The integration of vertical α-In2 Se3 memristors based on out-of-plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.-2 and a resistance-switching ratio of well over 103 . A multidirectionally operated α-In2 Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α-In2 Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.−2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing. Gate‐tunable and multidirection‐switchable memristive phenomena in a van der Waals ferroelectric α‐In2Se3 are demonstrated. The planar memristor exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the out‐of‐plane (OOP) (or in‐plane (IP)) resistance state directly by an IP (or OOP) programming pulse.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In 2 Se 3 , a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In 2 Se 3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In 2 Se 3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 10 9 in. −2 and a resistance‐switching ratio of well over 10 3 . A multidirectionally operated α‐In 2 Se 3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In 2 Se 3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.
Author He, Jr‐Hau
Zhang, Xixiang
Han, Ali
Huang, Jing‐Kai
Zhang, Junwei
Liu, Zhixiong
Li, Lain‐Jong
He, Xin
Hu, Weijin
Xue, Fei
Retamal, José Ramón Durán
Tung, Vincent
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0001-9039-7088
  surname: Xue
  fullname: Xue, Fei
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Xin
  surname: He
  fullname: He, Xin
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: José Ramón Durán
  surname: Retamal
  fullname: Retamal, José Ramón Durán
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Ali
  surname: Han
  fullname: Han, Ali
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Zhixiong
  surname: Liu
  fullname: Liu, Zhixiong
  organization: King Abdullah University of Science and Technology
– sequence: 7
  givenname: Jing‐Kai
  surname: Huang
  fullname: Huang, Jing‐Kai
  organization: King Abdullah University of Science and Technology
– sequence: 8
  givenname: Weijin
  surname: Hu
  fullname: Hu, Weijin
  organization: Chinese Academy of Sciences (CAS)
– sequence: 9
  givenname: Vincent
  surname: Tung
  fullname: Tung, Vincent
  organization: King Abdullah University of Science and Technology
– sequence: 10
  givenname: Jr‐Hau
  surname: He
  fullname: He, Jr‐Hau
  email: jrhau.he@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
– sequence: 11
  givenname: Lain‐Jong
  surname: Li
  fullname: Li, Lain‐Jong
  email: li.l@unsw.edu.au
  organization: University of New South Wales
– sequence: 12
  givenname: Xixiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xixiang
  email: xixiang.zhang@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31148294$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFq3DAQhkVJaDZprz0WQy-5eDOSJa11XJImLWRpoWl7FLPyiCjYcirZDbnlEfKMeZJ6u0kLgdKTYOb7fsT8-2wn9pEYe8NhzgHEETYdzgVwA7wCeMFmXAleSjBqh83AVKo0WtZ7bD_nKwAwGvRLtldxLmth5Iw1ZzjQw939xRhx3VKBsSlWYzuEJiRyQ-jjtPxyEwZ3-Xu_oi6FPISfVHy-pNh3FLEIscDiG8bihFLxHbHNxSml1FM7RaTgXrFdPw3p9eN7wL6evr84_lCefzr7eLw8L52sDJTregG1b7QxwhvdCKUditqjkaS4RwfCeRLar10jKqG5d1rXC66k0guFmlcH7HCbe536HyPlwXYhO2pbjNSP2QpRVbXmRokJffcMverHFKffTZRWWoCWG-rtIzWuO2rsdQodplv7dL8JkFvApT7nRN66MODmbEPC0FoOdlOT3dRk_9Q0afNn2lPyPwWzFW5CS7f_oe3yZLX86_4C_86lqA
CitedBy_id crossref_primary_10_1016_j_isci_2023_106673
crossref_primary_10_1038_s41467_024_54841_7
crossref_primary_10_1038_s41467_021_27617_6
crossref_primary_10_1103_j7t5_1t4c
crossref_primary_10_1016_j_scib_2021_06_020
crossref_primary_10_1038_s41467_025_61756_4
crossref_primary_10_1063_5_0098827
crossref_primary_10_1002_brx2_24
crossref_primary_10_1002_smll_202300468
crossref_primary_10_1038_s41928_019_0338_7
crossref_primary_10_1063_5_0147012
crossref_primary_10_1002_advs_202303032
crossref_primary_10_1002_adfm_202307901
crossref_primary_10_1088_1674_1056_aba603
crossref_primary_10_1021_acs_chemmater_5c00695
crossref_primary_10_1063_5_0202871
crossref_primary_10_1002_aelm_202000641
crossref_primary_10_1016_j_nanoen_2024_109646
crossref_primary_10_1021_acsami_5c02897
crossref_primary_10_1063_5_0127880
crossref_primary_10_1063_5_0147013
crossref_primary_10_1002_aelm_202200413
crossref_primary_10_1063_1_5129447
crossref_primary_10_1002_adma_202005620
crossref_primary_10_1016_j_vacuum_2024_113275
crossref_primary_10_1021_acsnano_5c02397
crossref_primary_10_1038_s41563_024_01986_x
crossref_primary_10_1002_adma_202007081
crossref_primary_10_1002_adma_202205402
crossref_primary_10_1002_adfm_202009999
crossref_primary_10_1007_s11433_022_2056_1
crossref_primary_10_1039_C9NR08063E
crossref_primary_10_1002_inf2_12341
crossref_primary_10_1002_smll_202105599
crossref_primary_10_1039_D0NR06872A
crossref_primary_10_3390_solids5010004
crossref_primary_10_1016_j_mee_2025_112354
crossref_primary_10_1063_5_0190609
crossref_primary_10_1088_1361_6463_ad865f
crossref_primary_10_1016_j_nanoen_2024_109861
crossref_primary_10_1063_5_0079535
crossref_primary_10_1016_j_chip_2025_100129
crossref_primary_10_1002_pi_5980
crossref_primary_10_1021_acs_nanolett_5c02425
crossref_primary_10_1002_adma_202416897
crossref_primary_10_1007_s40843_025_3424_6
crossref_primary_10_1016_j_nanoen_2021_105947
crossref_primary_10_1063_5_0090120
crossref_primary_10_1063_5_0255501
crossref_primary_10_1002_aelm_202101406
crossref_primary_10_1002_aisy_202100198
crossref_primary_10_1039_D1MH00446H
crossref_primary_10_1063_5_0098647
crossref_primary_10_3390_nano14201638
crossref_primary_10_1016_j_matt_2022_05_021
crossref_primary_10_1088_1361_6528_ad4652
crossref_primary_10_1063_5_0019555
crossref_primary_10_1088_2053_1583_ac1ada
crossref_primary_10_1002_smll_202203611
crossref_primary_10_1016_j_cej_2025_166513
crossref_primary_10_1002_advs_202413808
crossref_primary_10_1021_acsami_5c13157
crossref_primary_10_1002_adfm_202308129
crossref_primary_10_1002_smm2_1020
crossref_primary_10_3390_nano15020109
crossref_primary_10_1016_j_mseb_2022_115829
crossref_primary_10_1063_5_0197542
crossref_primary_10_1557_s43577_023_00599_0
crossref_primary_10_1039_D0MH01863E
crossref_primary_10_1002_smll_202307346
crossref_primary_10_1038_s41524_022_00953_x
crossref_primary_10_1007_s12274_022_4206_9
crossref_primary_10_1039_D1NR00318F
crossref_primary_10_1002_adma_202004469
crossref_primary_10_1063_5_0165837
crossref_primary_10_1063_5_0117355
crossref_primary_10_1002_adma_202008709
crossref_primary_10_1002_smll_202409004
crossref_primary_10_1038_s41467_023_41991_3
crossref_primary_10_1002_adma_202201880
crossref_primary_10_1039_C9RA06566K
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1063_5_0177899
crossref_primary_10_1088_1674_1056_ad8db4
crossref_primary_10_1002_advs_202410851
crossref_primary_10_1002_adma_202400332
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1002_aelm_202300108
crossref_primary_10_1016_j_cossms_2024_101178
crossref_primary_10_26599_NR_2025_94907425
crossref_primary_10_1063_5_0051394
crossref_primary_10_1002_adma_202108025
crossref_primary_10_1016_j_mtphys_2024_101607
crossref_primary_10_1063_5_0028079
crossref_primary_10_1002_smll_202304173
crossref_primary_10_1038_s41928_022_00847_2
crossref_primary_10_1088_2053_1583_ac6191
crossref_primary_10_1038_s41467_023_38445_1
crossref_primary_10_1038_s41928_020_0441_9
crossref_primary_10_1016_j_revmat_2025_100059
crossref_primary_10_1038_s41467_020_16291_9
crossref_primary_10_1109_TED_2022_3184621
crossref_primary_10_1002_adma_202106886
crossref_primary_10_1002_adma_202108826
crossref_primary_10_1002_ijch_202100112
crossref_primary_10_1109_TDMR_2022_3153961
crossref_primary_10_1109_TED_2021_3059976
crossref_primary_10_1002_aelm_202100609
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1016_j_matt_2022_10_017
crossref_primary_10_1016_j_mtelec_2023_100080
crossref_primary_10_1063_5_0116445
crossref_primary_10_1038_s41563_024_02082_w
crossref_primary_10_1063_5_0062857
crossref_primary_10_1038_s41699_021_00261_w
crossref_primary_10_1103_PhysRevApplied_21_044033
crossref_primary_10_1002_smll_202405459
crossref_primary_10_1063_5_0191188
crossref_primary_10_1002_adfm_202306682
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1038_s41565_020_0724_3
crossref_primary_10_1039_D1NR03807A
crossref_primary_10_1063_5_0130587
crossref_primary_10_1002_adfm_202304139
crossref_primary_10_1002_advs_202100713
crossref_primary_10_1126_sciadv_adr5337
crossref_primary_10_1002_adma_202005098
crossref_primary_10_1088_2634_4386_ad7755
crossref_primary_10_1063_5_0131838
crossref_primary_10_1063_5_0035764
crossref_primary_10_1002_admt_202300203
crossref_primary_10_1007_s11432_025_4432_x
crossref_primary_10_1063_5_0260065
crossref_primary_10_1088_1361_6641_ace5cc
crossref_primary_10_1039_D1RA07728G
crossref_primary_10_1038_s41699_024_00523_3
crossref_primary_10_1038_s41467_020_20257_2
crossref_primary_10_1002_pssr_202300479
crossref_primary_10_1007_s40843_019_1212_x
crossref_primary_10_1063_5_0149503
crossref_primary_10_1021_acsami_5c01496
Cites_doi 10.1038/ncomms14956
10.1103/PhysRevLett.120.227601
10.1002/adma.200900822
10.1021/nl802497e
10.1038/nmat3649
10.1038/am.2017.142
10.1038/nmat3415
10.1021/acs.nanolett.5b02523
10.1021/nl302912t
10.1063/1.4901072
10.1021/acsnano.8b02152
10.1021/nn2024557
10.1038/nnano.2012.240
10.1109/TED.2016.2630925
10.1021/acs.nanolett.7b02198
10.1021/nn405037s
10.1038/ncomms14736
10.1038/ncomms5289
10.1038/nature25747
10.1109/TMAG.2004.842032
10.1109/TED.2011.2147791
10.1039/C8MH00082D
10.1039/C7NR02461D
10.1021/acs.inorgchem.8b01950
10.1063/1.5038037
10.1002/adma.201704908
10.1038/nnano.2017.83
10.1126/sciadv.aar7720
10.1021/nl904092h
10.1063/1.2793505
10.1126/science.1168636
10.1039/C8NR04422H
10.1002/adfm.201803738
10.1021/acs.nanolett.7b04852
10.1038/ncomms12357
10.1038/nmat4135
10.1038/nnano.2011.213
10.1107/S0021889879012863
10.1063/1.3589814
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901300
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31148294
10_1002_adma_201901300
ADMA201901300
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: CRF‐2015‐2634‐CRG4; CRF‐2016‐2996‐CRG5
– fundername: King Abdullah University of Science and Technology
  grantid: CRF-2015-2634-CRG4
– fundername: King Abdullah University of Science and Technology
  grantid: CRF-2016-2996-CRG5
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4390-b8708fd6992f96d256ca28fa94e51fac02cfe26fbcd23261fc66871545675a613
IEDL.DBID DRFUL
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477975900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:34:29 EDT 2025
Mon Jul 14 08:56:45 EDT 2025
Thu Apr 03 07:04:47 EDT 2025
Sat Nov 29 07:20:00 EST 2025
Tue Nov 18 22:42:31 EST 2025
Wed Jan 22 16:39:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords memristors
ferroelectrics
multidirectional programming
gate tunability
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-b8708fd6992f96d256ca28fa94e51fac02cfe26fbcd23261fc66871545675a613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3478-6414
0000-0001-9039-7088
PMID 31148294
PQID 2265620642
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2233861952
proquest_journals_2265620642
pubmed_primary_31148294
crossref_citationtrail_10_1002_adma_201901300
crossref_primary_10_1002_adma_201901300
wiley_primary_10_1002_adma_201901300_ADMA201901300
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 64
2015; 15
2010; 10
2015; 14
2017; 8
2018; 28
1979; 12
2009; 21
2005; 41
2007; 91
2011; 98
2008; 8
2011; 58
2013; 8
2012; 12
2012; 11
2017; 9
2014; 105
2018; 18
2016; 7
2014; 5
2018; 5
2018; 4
2017; 17
2013; 12
2018; 113
2017; 12
2018; 554
2018; 30
2018; 12
2012; 6
2012; 7
2014; 8
2018; 10
2009; 324
2018; 57
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 8
  start-page: 14956
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1297
  year: 2010
  publication-title: Nano Lett.
– volume: 5
  start-page: 4289
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 860
  year: 2012
  publication-title: Nat. Mater.
– volume: 41
  start-page: 1034
  year: 2005
  publication-title: IEEE Trans. Magn.
– volume: 57
  start-page: 11775
  year: 2018
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 8427
  year: 2017
  publication-title: Nanoscale
– volume: 7
  start-page: 12357
  year: 2016
  publication-title: Nat. Commun.
– volume: 21
  start-page: 3754
  year: 2009
  publication-title: Adv. Mater.
– volume: 15
  start-page: 7853
  year: 2015
  publication-title: Nano Lett.
– volume: 12
  start-page: 4976
  year: 2018
  publication-title: ACS Nano
– volume: 12
  start-page: 617
  year: 2013
  publication-title: Nat. Mater.
– volume: 105
  start-page: 182101
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 3973
  year: 2008
  publication-title: Nano Lett.
– volume: 98
  start-page: 192901
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 120
  start-page: 227601
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1704908
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 14885
  year: 2018
  publication-title: Nanoscale
– volume: 324
  start-page: 63
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 514
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 1253
  year: 2018
  publication-title: Nano Lett.
– volume: 12
  start-page: 5697
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 784
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 101
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 416
  year: 1979
  publication-title: J. Appl. Crystallogr.
– volume: 58
  start-page: 2729
  year: 2011
  publication-title: IEEE Trans. Electron Devices
– volume: 9
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 28
  start-page: 1803738
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 521
  year: 2018
  publication-title: Mater. Horiz.
– volume: 17
  start-page: 5508
  year: 2017
  publication-title: Nano Lett.
– volume: 91
  start-page: 133119
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 554
  start-page: 500
  year: 2018
  publication-title: Nature
– volume: 64
  start-page: 312
  year: 2017
  publication-title: IEEE Trans. Electron Devices
– volume: 113
  start-page: 043102
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 14736
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: eaar7720
  year: 2018
  publication-title: Sci. Adv.
– volume: 14
  start-page: 199
  year: 2015
  publication-title: Nat. Mater.
– volume: 6
  start-page: 74
  year: 2012
  publication-title: ACS Nano
– ident: e_1_2_5_28_1
  doi: 10.1038/ncomms14956
– ident: e_1_2_5_21_1
  doi: 10.1103/PhysRevLett.120.227601
– ident: e_1_2_5_32_1
  doi: 10.1002/adma.200900822
– ident: e_1_2_5_33_1
  doi: 10.1021/nl802497e
– ident: e_1_2_5_9_1
  doi: 10.1038/nmat3649
– ident: e_1_2_5_35_1
  doi: 10.1038/am.2017.142
– ident: e_1_2_5_6_1
  doi: 10.1038/nmat3415
– ident: e_1_2_5_19_1
  doi: 10.1021/acs.nanolett.5b02523
– ident: e_1_2_5_7_1
  doi: 10.1021/nl302912t
– ident: e_1_2_5_17_1
  doi: 10.1063/1.4901072
– ident: e_1_2_5_24_1
  doi: 10.1021/acsnano.8b02152
– ident: e_1_2_5_36_1
  doi: 10.1021/nn2024557
– ident: e_1_2_5_3_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_5_4_1
  doi: 10.1109/TED.2016.2630925
– ident: e_1_2_5_27_1
  doi: 10.1021/acs.nanolett.7b02198
– ident: e_1_2_5_20_1
  doi: 10.1021/nn405037s
– ident: e_1_2_5_10_1
  doi: 10.1038/ncomms14736
– ident: e_1_2_5_1_1
  doi: 10.1038/ncomms5289
– ident: e_1_2_5_18_1
  doi: 10.1038/nature25747
– ident: e_1_2_5_29_1
  doi: 10.1109/TMAG.2004.842032
– ident: e_1_2_5_38_1
  doi: 10.1109/TED.2011.2147791
– ident: e_1_2_5_11_1
  doi: 10.1039/C8MH00082D
– ident: e_1_2_5_12_1
  doi: 10.1039/C7NR02461D
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.inorgchem.8b01950
– ident: e_1_2_5_13_1
  doi: 10.1063/1.5038037
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201704908
– ident: e_1_2_5_5_1
  doi: 10.1038/nnano.2017.83
– ident: e_1_2_5_14_1
  doi: 10.1126/sciadv.aar7720
– ident: e_1_2_5_37_1
  doi: 10.1021/nl904092h
– ident: e_1_2_5_30_1
  doi: 10.1063/1.2793505
– ident: e_1_2_5_39_1
  doi: 10.1126/science.1168636
– ident: e_1_2_5_16_1
  doi: 10.1039/C8NR04422H
– ident: e_1_2_5_26_1
  doi: 10.1002/adfm.201803738
– ident: e_1_2_5_25_1
  doi: 10.1021/acs.nanolett.7b04852
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_5_2_1
  doi: 10.1038/nmat4135
– ident: e_1_2_5_8_1
  doi: 10.1038/nnano.2011.213
– ident: e_1_2_5_23_1
  doi: 10.1107/S0021889879012863
– ident: e_1_2_5_31_1
  doi: 10.1063/1.3589814
SSID ssj0009606
Score 2.639778
Snippet Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901300
SubjectTerms Ferroelectric materials
Ferroelectricity
ferroelectrics
gate tunability
Logic circuits
Materials science
Memory devices
Memristors
multidirectional programming
Photoelectric effect
Photoelectric emission
Polarization
Resistance
Switching
Synapses
Title Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901300
https://www.ncbi.nlm.nih.gov/pubmed/31148294
https://www.proquest.com/docview/2265620642
https://www.proquest.com/docview/2233861952
Volume 31
WOSCitedRecordID wos000477975900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAH9qVsMhISJ4vUTZz4WFEqDoAQa2-R49iiEqQopXDlE_hGvoSxkwYqhJDglsiTxPLMeN7Y8RuAPe6HqUY7oZbsjaJRJFRinKUYi7mK0tD3m4krNhGenUXdrjj_coq_4IeoFtysZ7j52jq4TAYHn6ShMnW8QTagNT1M2qcYGq9fg6n2Ref65JN4l7v6mna_jwruRyPiRo8djL9hPDB9Q5vj4NVFn878__u9AHMl8iStwlQWYUJnSzD7hY9wGVK7lvb--nY1dCeqiMxS4k7oFoEPVYiNly891LRrP9UPbo541uT8TmeWzEGSXkYkuZEZaeuc3Eo0b9LRed4vCu701Apcd46uDo9pWYaBKkQrHk3QpSOTciGYETxFjKQki4wUvg4aRiqPKaMZN4lKEZ7xhlGcYxpmoVkYSIQLq1DL-pleByJFEHqJMQqBIhoJlywJtAiUxA9oHJ460JEOYlVylNtSGfdxwa7MYjt6cTV6ddiv5B8Ldo4fJbdGKo1LLx3ECD0R_tkUrA67VTP6l900kZnuD60MJvGYZQYos1aYQvWppk0mmfDrwJzGf-lD3Gqftqq7jb88tAkz9rr4X3gLak_5UG_DtHp-6g3yHZgMu9FO6QEfmwwEkw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9NZRLwsA0GrBsDIyHtySK4iRM_VusqJtoKbeXPW-Q4tqgE6RQoe-Uj8Bn3SXbnpGHVNE1CPCZ2Yst35_ud__wOYF-GcW5RTziRvXFUioxr9LMcfbE0SR6HYSfzySbi0Si5uFAn9WlCugtT8UM0C25kGX6-JgOnBemDR9ZQnXviIPJonQCj9qUQdSlqwVLvW_908Mi8K32CTdrw40qGyZy5MRAHi39Y9Ex_wc1F9OrdT__1M3T8DbyqsSfrVsqyBi9ssQ6rfzASvoWcVtN-3T-MZ_5OFdNFzvwd3cr1oRCx8PvPCcralw_ttZ8l7iw7ubQF0TloNimYZme6YD1bsnONCs76tiynVcqdidmA0_6X8ecjXidi4AbxSsAzNOrE5VIp4ZTMESUZLRKnVWijQ6dNIIyzQrrM5AjQ5KEzUmIgRuAsjjQChk1oFdPCvgOmVRQHmXMGoSKqidQii6yKjMYGLA5PG_hcCKmpWcopWcZVWvEri5RGL21Grw2fmvo_Kn6Of9bcnss0re30JkXwiQCQgrA27DXFaGG0baILO51RHQzjMc6MsM5WpQtNUx0KJ4UK2yC8yP_Th7TbG3abp_dP-WgXlo_Gw0E6-Do6_gAr9L46PbwNrdtyZj_CS3N3O7kpd2pD-A0W_Qeb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9N3YTgAQZsUOjASEg8WU3dxIkfK0rEtLaqoGN7ixz_0SpBOmVreeUj7DPuk3B20pRqQkgTj4md2PLd-X7nP78DeM_DWBvUE-rI3igqRU4l-lmKvpirRMdh2M99sol4MknOz8W0Pk3o7sJU_BDNgpuzDD9fOwM3l9p2N6yhUnviIOfR-gFG7bthJDja5u7wS3o62jDvcp9g0234UcHDZM3cGLDu9h-2PdMduLmNXr37SZ_8h47vw-Mae5JBpSxPYccUz-DRH4yEz0G71bTbXzezpb9TRWShib-jW7k-FCIWfv05R1n78rH54WeJlSHTC1M4OgdJ5gWR5JssyNCU5EyigpPUlOWiSrkzVwdwmn6affxM60QMVCFeCWiORp1YzYVgVnCNKElJllgpQhP1rFQBU9YwbnOlEaDxnlWcYyDmwFkcSQQMh9AqFoV5CUSKKA5yaxVCRVQTLlkeGREpiQ0YHJ420LUQMlWzlLtkGd-zil-ZZW70smb02vChqX9Z8XP8tWZnLdOsttOrDMEnAkAXhLXhXVOMFua2TWRhFktXB8N4jDMjrPOi0oWmqb4LJ5kI28C8yP_Rh2wwHA-ap1f3-egtPJgO02x0PDl5DQ_d6-rwcAda1-XSHMGeWl3Pr8o3tR38BpV2BxY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-Tunable+and+Multidirection-Switchable+Memristive+Phenomena+in+a+Van+Der+Waals+Ferroelectric&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xue%2C+Fei&rft.au=He%2C+Xin&rft.au=Retamal%2C+Jos%C3%A9+Ram%C3%B3n+Dur%C3%A1n&rft.au=Han%2C+Ali&rft.date=2019-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=29&rft.spage=e1901300&rft_id=info:doi/10.1002%2Fadma.201901300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon