An in silico platform for predicting, screening and designing of antihypertensive peptides

High blood pressure or hypertension is an affliction that threatens millions of lives worldwide. Peptides from natural origin have been shown recently to be highly effective in lowering blood pressure. In the present study, we have framed a platform for predicting and designing novel antihypertensiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 5; číslo 1; s. 12512
Hlavní autoři: Kumar, Ravi, Chaudhary, Kumardeep, Singh Chauhan, Jagat, Nagpal, Gandharva, Kumar, Rahul, Sharma, Minakshi, Raghava, Gajendra P.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 27.07.2015
Nature Publishing Group
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:High blood pressure or hypertension is an affliction that threatens millions of lives worldwide. Peptides from natural origin have been shown recently to be highly effective in lowering blood pressure. In the present study, we have framed a platform for predicting and designing novel antihypertensive peptides. Due to a large variation found in the length of antihypertensive peptides, we divided these peptides into four categories (i) Tiny peptides, (ii) small peptides, (iii) medium peptides and (iv) large peptides. First, we developed SVM based regression models for tiny peptides using chemical descriptors and achieved maximum correlation of 0.701 and 0.543 for dipeptides and tripeptides, respectively. Second, classification models were developed for small peptides and achieved maximum accuracy of 76.67%, 72.04% and 77.39% for tetrapeptide, pentapeptide and hexapeptides, respectively. Third, we have developed a model for medium peptides using amino acid composition and achieved maximum accuracy of 82.61%. Finally, we have developed a model for large peptides using amino acid composition and achieved maximum accuracy of 84.21%. Based on the above study, a web-based platform has been developed for locating antihypertensive peptides in a protein, screening of peptides and designing of antihypertensive peptides.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep12512