Solar-assisted tri-generation system with LCPV‑CPC and small-scale gas turbine for year-round clean energy in hot-dry climates

This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 36464 - 23
Main Authors: Ben Hamida, Mohamed Bechir, Rasheed, Rassol Hamed, Singh, Narinderjit Singh Sawaran, Taghavi, Mohammad
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 17.10.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO 2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO 2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m 2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-21338-2