Solar-assisted tri-generation system with LCPV‑CPC and small-scale gas turbine for year-round clean energy in hot-dry climates

This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 36464 - 23
Hauptverfasser: Ben Hamida, Mohamed Bechir, Rasheed, Rassol Hamed, Singh, Narinderjit Singh Sawaran, Taghavi, Mohammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 17.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO 2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO 2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m 2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings.
AbstractList This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings.
This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings.
Abstract This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings.
This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO 2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO 2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m 2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings.
This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings.This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings.
ArticleNumber 36464
Author Rasheed, Rassol Hamed
Singh, Narinderjit Singh Sawaran
Ben Hamida, Mohamed Bechir
Taghavi, Mohammad
Author_xml – sequence: 1
  givenname: Mohamed Bechir
  surname: Ben Hamida
  fullname: Ben Hamida, Mohamed Bechir
  organization: Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU)
– sequence: 2
  givenname: Rassol Hamed
  surname: Rasheed
  fullname: Rasheed, Rassol Hamed
  organization: Advanced Technical College, University of Warith Al-Anbiyaa
– sequence: 3
  givenname: Narinderjit Singh Sawaran
  surname: Singh
  fullname: Singh, Narinderjit Singh Sawaran
  organization: Faculty of Data Science and Information Technology, INTI International University
– sequence: 4
  givenname: Mohammad
  surname: Taghavi
  fullname: Taghavi, Mohammad
  email: mohammad.taghavi.energy@gmail.com
  organization: Department of Mechanical Engineering, Faculty of Engineering, Shiraz Branch, Islamic Azad University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41107440$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAltiwCfgWx1miiEulI1GJy9aa2E7qo8QudqIqu74Cr8iT4HNSCmKBN_aMvvlnRv6fFic-eFsUzwl-TTCTbxInVSNLTKuSEsZkSR8VZxTzHDJKT_56nxYXKe1xPhVtOGmeFKecEFxzjs-Ku89hhFhCSi7N1qA5unKw3kaYXfAorTk7oVs3X6Nde_Xt592P9qpF4A1KE4xjmTSMFg2Q0LzEznmL-hDRarNmDEvG9GjBo4PisCLn0XWYSxPXnHcTzDY9Kx73MCZ7cX-fF1_fv_vSfix3nz5ctm93peZM5hLRkJr3vQRaVUIYXknDscFCcit4XVVMG2Jo02kOVJq-FjXTlGqi-xo4puy8uNx0TYC9uom5e1xVAKeOiRAHBXF2eVxVUwldbZsaC8Ebi2UlNXCwXSN6ILTLWq82rZsYvi82zWpySdtxBG_DkhSjgtZEclxl9OU_6D4s0edNj5TAuOEiUy_uqaWbrHkY7_c_ZYBugI4hpWj7B4RgdfCD2vygsh_U0Q_qsDLbilKG_WDjn97_qfoF4rW24w
Cites_doi 10.1021/acs.est.4c03478
10.1016/j.solener.2023.112019
10.1016/j.renene.2018.09.027
10.1016/j.energy.2019.03.147
10.1016/j.ref.2024.100546
10.1016/j.enconman.2024.118246
10.1016/j.applthermaleng.2022.119648
10.1016/j.applthermaleng.2025.125834
10.1016/j.ijft.2024.100931
10.1016/j.enconman.2017.08.036
10.1016/j.energy.2024.133043
10.1016/j.energy.2023.129976
10.1109/JESTPE.2024.3409290
10.1016/j.rineng.2024.102646
10.1109/TEVC.2016.2519378
10.1016/j.psep.2023.03.023
10.1109/TEVC.2013.2281535
10.1016/j.ijepes.2022.108684
10.1016/j.scs.2023.104412
10.1016/j.psep.2023.06.037
10.1061/JSENDH.STENG-13476
10.1016/j.renene.2019.05.004
10.1016/j.jer.2024.04.023
10.1016/j.energy.2020.119096
10.1016/j.asej.2024.103088
10.1016/j.solener.2024.112756
10.1016/j.solener.2025.113612
10.1016/j.applthermaleng.2025.126246
10.1038/s41598-025-90377-6
10.1016/j.csite.2023.103911
10.1016/j.tsep.2023.101664
10.1016/j.renene.2024.121086
10.1016/j.est.2025.116750
10.1109/TSG.2022.3231590
10.1016/j.enconman.2023.117223
10.1016/j.enconman.2019.111942
10.1016/j.enconman.2019.111866
10.1016/j.ijhydene.2025.01.239
10.1016/j.apenergy.2025.126047
10.1038/s41598-024-54317-0
10.1038/s41598-025-90887-3
10.1016/j.ijhydene.2025.01.133
10.1016/j.energy.2022.125777
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-21338-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_728ab7e9706649e0858ca4aeb96fa12b
41107440
10_1038_s41598_025_21338_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-d69174ff8a25566d458d40d0684e647553cd1d29bc4a28df7673c22c1cf7a4023
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597098000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 19:21:16 EST 2025
Sun Oct 19 01:52:00 EDT 2025
Sun Oct 19 01:10:36 EDT 2025
Tue Oct 21 01:43:27 EDT 2025
Sat Nov 29 07:09:32 EST 2025
Sun Oct 19 01:20:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Clean energy technology
Low‑Concentration hybrid PV–Compound parabolic concentrator thermal
Reference vector guided evolutionary algorithm
Tri‑Generation plant
Small‑Scale gas turbine generator
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-d69174ff8a25566d458d40d0684e647553cd1d29bc4a28df7673c22c1cf7a4023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/728ab7e9706649e0858ca4aeb96fa12b
PMID 41107440
PQID 3262600946
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_728ab7e9706649e0858ca4aeb96fa12b
proquest_miscellaneous_3262718405
proquest_journals_3262600946
pubmed_primary_41107440
crossref_primary_10_1038_s41598_025_21338_2
springer_journals_10_1038_s41598_025_21338_2
PublicationCentury 2000
PublicationDate 2025-10-17
PublicationDateYYYYMMDD 2025-10-17
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 21338_CR10
Y Qin (21338_CR12) 2024; 305
Y Kong (21338_CR19) 2019; 132
J Wang (21338_CR13) 2019; 175
21338_CR35
J Wang (21338_CR43) 2023; 145
21338_CR14
K Deb (21338_CR36) 2014; 18
A Alfaris (21338_CR1) 2025; 15
MA Ismail (21338_CR11) 2025; 267
M Parvez (21338_CR32) 2024; 24
Y Chen (21338_CR21) 2024; 232
A Kharaghani (21338_CR18) 2024; 277
MK Manesh (21338_CR29) 2023; 263
Z Wang (21338_CR3) 2024; 14
M Herrando (21338_CR16) 2019; 143
SR Marjani (21338_CR2) 2025; 15
F Ren (21338_CR45) 2021; 215
X Mi (21338_CR34) 2025; 270
S Hassani (21338_CR24) 2025; 297
K Wang (21338_CR46) 2022; 14
A Basem (21338_CR4) 2024; 23
R Cheng (21338_CR37) 2016; 20
21338_CR40
T Wu (21338_CR27) 2024; 150
21338_CR41
X Zhou (21338_CR25) 2024; 309
21338_CR42
Z Zeng (21338_CR20) 2025; 13
YJ Song (21338_CR5) 2023; 264
B Mei (21338_CR23) 2025; 105
J Villarroel-Schneider (21338_CR33) 2023; 291
S Yi (21338_CR6) 2023; 91
L Yang (21338_CR38) 2019; 199
21338_CR28
X Zhao (21338_CR30) 2024; 290
M Badri (21338_CR15) 2025; 103
C Suresh (21338_CR7) 2024; 15
X Wang (21338_CR31) 2023; 219
J Song (21338_CR26) 2025; 393
M Zoghi (21338_CR22) 2024; 48
ME Palacios-Lorenzo (21338_CR39) 2024; 53
21338_CR8
A Almadhor (21338_CR9) 2025; 122
F Ren (21338_CR44) 2019; 197
S Yang (21338_CR17) 2017; 150
References_xml – ident: 21338_CR40
  doi: 10.1021/acs.est.4c03478
– volume: 264
  start-page: 112019
  year: 2023
  ident: 21338_CR5
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.112019
– volume: 132
  start-page: 1373
  year: 2019
  ident: 21338_CR19
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.09.027
– volume: 175
  start-page: 1246
  year: 2019
  ident: 21338_CR13
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.147
– volume: 48
  start-page: 100546
  year: 2024
  ident: 21338_CR22
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2024.100546
– volume: 305
  start-page: 118246
  year: 2024
  ident: 21338_CR12
  publication-title: Energy. Conv. Manag.
  doi: 10.1016/j.enconman.2024.118246
– ident: 21338_CR42
– volume: 219
  start-page: 119648
  year: 2023
  ident: 21338_CR31
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119648
– volume: 267
  start-page: 125834
  year: 2025
  ident: 21338_CR11
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2025.125834
– volume: 24
  start-page: 100931
  year: 2024
  ident: 21338_CR32
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2024.100931
– volume: 150
  start-page: 375
  year: 2017
  ident: 21338_CR17
  publication-title: Energy. Conv. Manag.
  doi: 10.1016/j.enconman.2017.08.036
– volume: 309
  start-page: 133043
  year: 2024
  ident: 21338_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133043
– volume: 290
  start-page: 129976
  year: 2024
  ident: 21338_CR30
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129976
– volume: 13
  start-page: 1503
  issue: 2
  year: 2025
  ident: 21338_CR20
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2024.3409290
– volume: 23
  start-page: 102646
  year: 2024
  ident: 21338_CR4
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102646
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 21338_CR37
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– ident: 21338_CR28
  doi: 10.1016/j.psep.2023.03.023
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 21338_CR36
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 145
  start-page: 108684
  year: 2023
  ident: 21338_CR43
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108684
– volume: 91
  start-page: 104412
  year: 2023
  ident: 21338_CR6
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2023.104412
– ident: 21338_CR10
  doi: 10.1016/j.psep.2023.06.037
– volume: 150
  start-page: 05024004
  issue: 12
  year: 2024
  ident: 21338_CR27
  publication-title: J. Struct. Eng.
  doi: 10.1061/JSENDH.STENG-13476
– volume: 143
  start-page: 637
  year: 2019
  ident: 21338_CR16
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.004
– ident: 21338_CR8
  doi: 10.1016/j.jer.2024.04.023
– volume: 215
  start-page: 119096
  year: 2021
  ident: 21338_CR45
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119096
– ident: 21338_CR41
– volume: 15
  start-page: 103088
  issue: 12
  year: 2024
  ident: 21338_CR7
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2024.103088
– volume: 277
  start-page: 112756
  year: 2024
  ident: 21338_CR18
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2024.112756
– volume: 297
  start-page: 113612
  year: 2025
  ident: 21338_CR24
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2025.113612
– volume: 270
  start-page: 126246
  year: 2025
  ident: 21338_CR34
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2025.126246
– volume: 15
  start-page: 9181
  issue: 1
  year: 2025
  ident: 21338_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-90377-6
– volume: 53
  start-page: 103911
  year: 2024
  ident: 21338_CR39
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103911
– ident: 21338_CR14
  doi: 10.1016/j.tsep.2023.101664
– volume: 232
  start-page: 121086
  year: 2024
  ident: 21338_CR21
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.121086
– volume: 122
  start-page: 116750
  year: 2025
  ident: 21338_CR9
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2025.116750
– ident: 21338_CR35
– volume: 14
  start-page: 2709
  issue: 4
  year: 2022
  ident: 21338_CR46
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3231590
– volume: 291
  start-page: 117223
  year: 2023
  ident: 21338_CR33
  publication-title: Energy. Conv. Manag.
  doi: 10.1016/j.enconman.2023.117223
– volume: 199
  start-page: 111942
  year: 2019
  ident: 21338_CR38
  publication-title: Energy. Conv. Manag.
  doi: 10.1016/j.enconman.2019.111942
– volume: 197
  start-page: 111866
  year: 2019
  ident: 21338_CR44
  publication-title: Energy. Conv. Manag.
  doi: 10.1016/j.enconman.2019.111866
– volume: 105
  start-page: 56
  year: 2025
  ident: 21338_CR23
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2025.01.239
– volume: 393
  start-page: 126047
  year: 2025
  ident: 21338_CR26
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2025.126047
– volume: 14
  start-page: 3812
  issue: 1
  year: 2024
  ident: 21338_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-54317-0
– volume: 15
  start-page: 6449
  issue: 1
  year: 2025
  ident: 21338_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-90887-3
– volume: 103
  start-page: 349
  year: 2025
  ident: 21338_CR15
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2025.01.133
– volume: 263
  start-page: 125777
  year: 2023
  ident: 21338_CR29
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125777
SSID ssj0000529419
Score 2.4615078
Snippet This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the...
Abstract This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 36464
SubjectTerms 639/4077/4072
639/4077/909
639/4077/909/4101
Alternative energy sources
Carbon
Carbon dioxide
Carbon dioxide emissions
Clean energy
Clean energy technology
Clean technology
Climatic conditions
Cooling
Cooling systems
Costs
Economics
Efficiency
Electric rates
Electricity
Emissions
Emissions control
Energy conservation
Energy consumption
Energy transition
Flexibility
Gas turbines
Greenhouse gases
Heat exchangers
Humanities and Social Sciences
Hydrogen
Low‑Concentration hybrid PV–Compound parabolic concentrator thermal
multidisciplinary
Natural gas
Optimization algorithms
Optimization techniques
Reference vector guided evolutionary algorithm
Renewable resources
Science
Science (multidisciplinary)
Small‑Scale gas turbine generator
Solar energy
Solar radiation
Systems stability
Thermodynamics
Tri‑Generation plant
Turbines
Water temperature
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggODCo0AJFGQkbmA1cSaxc0KwouIA1Uo81Jvl2M52pTYpybbS3voX-Iv8Emby2ArxuHBNLMfRN-P5xuOZYeyFLpPc6cIJakgpwAUpitJJAZXLClkiw_VDswl1cKAPD4v5eODWjdcqpz2x36h94-iMfA9pBtVSLyB_ffpNUNcoiq6OLTSusmvIbBK60vVRzjdnLBTFgqQYc2XiVO91aK8op0xmQpJ3JuQv9qgv2_8nrvlbnLQ3P_t3_nfhd9ntkXjyN4Ok3GNXQr3NbgytKNfb7OaUodzdZxefyN8VSKtJBjxftUux6MtTE4p8KP7M6QSXf5jNv_64-D6bz7itPe9O7PGx6BD3wBe242jP0PMOHJkxX6NOiZa6OHFcgK156NMO-bLmR81K-HaNz5cnxH0fsC_77z7P3ouxU4NwkGockqPXB1WlLVU0yz1k2kPs41xDyEFlWep84iVKAVipfaVylTopXeIqZdGDTR-yrbqpwyPGwSaxTcHmSeVAVqoIsQ-lBZwgeEghYi8nvMzpUJDD9IH0VJsBXYPomh5dIyP2liDdjKRi2v2Dpl2YUTeNktqWKhQK6Rfg93SmnQUbyiKvbCLLiO1OyJpRwztzCWvEnm9eo25SwMXWoTkbxihyobOI7QyCtFkJkOMNEEfs1SRZl5P__Yce_3stT9gtScJNV27ULttatWfhKbvuzlfLrn3Wa8dPIyYWRw
  priority: 102
  providerName: ProQuest
Title Solar-assisted tri-generation system with LCPV‑CPC and small-scale gas turbine for year-round clean energy in hot-dry climates
URI https://link.springer.com/article/10.1038/s41598-025-21338-2
https://www.ncbi.nlm.nih.gov/pubmed/41107440
https://www.proquest.com/docview/3262600946
https://www.proquest.com/docview/3262718405
https://doaj.org/article/728ab7e9706649e0858ca4aeb96fa12b
Volume 15
WOSCitedRecordID wos001597098000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBYkL4p9AWRmJG1hNnElsH-mqFUh0FfGn5RQ5tlNWarNos0XaW1-BV-RJmIl3lyJAXLj44FiO7W8mMxPb3zD2TDdZ6bRxghJSCnBBCtM4KaB1hZENerg-JptQk4meTk11KdUXnQmL9MBx4faV1LZRwSi0jWACegjaWbChMWVrM9nQ1zdV5lIwFVm9pYHMrG_JpLne79FS0W0yWQhJcZmQv1iigbD_T17mbzukg-E5usVurj1G_jKO9Da7Ero77HrMIbm6yy7eUXAq0AcmwDxfLmbiZOCSpiXnkamZ0-9W_mZcffx-8W1cjbntPO_P7Omp6BGkwE9sz9H4YJgcOLqxfIUKIBaUconjS23Hw3BHkM86_nm-FH6xwvrZGTmq99iHo8P341dinVZBOMg1NikxRIO21Zbox0oPhfaQ-rTUEEpQRZE7n3mJkIGV2reqVLmT0mWuVRbDzfw-2-nmXXjIONgstTnYMmsdyFYhPj40FrCD4CGHhD3fLHH9JbJn1MOud67rCEiNgNQDILVM2AGhsG1JzNdDBcpDvZaH-l_ykLC9DYb1Wh37Gn1UIuI3UCbs6fYxKhLtjtguzM9jG0XxbpGwBxH77UiAomSANGEvNsLws_O_T-jR_5jQY3ZDktTSKRq1x3aWi_PwhF1zX5ezfjFiV9VUDaUesd2Dw0n1djSoApbHsqJSYblbvT6uPv0A6G0LvA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAioXHuXRQAEjwQmsbpxJ4hwQgoWqVZfVShTUm3FsZ7tSmy3JFrS3_gX-CD-KX8JMstkK8bj1wNWJnLHzeZ6eGcaeqDxMrMqsoIaUAqyXIsutFFDYOJM5ariubTaRDofq4CAbrbDvXS4MXavseGLDqN3Uko98C9UMqqWeQfLy5LOgrlEUXe1aaLSw2PPzr2iy1S923-D_fSrl9tv9_o5YdBUQFiI1Ey5BCwWKQhmqvpU4iJWDnuslCnwCaRxH1oVOIsVgpHJFmqSRldKGtkgNNIUOkOVfAqosRlcF5Wjp06GoGYTZIjenF6mtGuUj5bDJWEiyBoX8Rf41bQL-pNv-FpdtxN329f9to26wawvFmr9qT8JNtuLLdXalbbU5X2drXQZ2fYudvSd7XqDZQBh3fFZNxLgpv00o5W1xa04eaj7ojz7-OPvWH_W5KR2vj83RkagR156PTc1RXueopnPU_Pkc1ywq6lLFkQBTct-kVfJJyQ-nuM5qjuOTY9Ltb7MPF7IVd9hqOS39BuNgwp6JwCRhYUEWaeZ7zucGcALvIIKAPevwoU_agiO6uSgQKd2iSSOadIMmLQP2miC0fJOKhTcD02qsF7xHp1KZPPVZiuol4PdUrKwB4_MsKUwo84BtdkjSCw5W63MYBezx8jHyHgoomdJPT9t3UnIRxAG72wJ3SQmQYwEPScCed0g-n_zvC7r3b1oesbWd_XcDPdgd7t1nVyUdLLpelG6y1Vl16h-wy_bLbFJXD5uTydmni0b4T3PRcVs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGLaqKduFpWyBAkaCE1iTOH8S54AQTBlRtYwisag9Gcd2hpHaTEmmoLn1FXgdHocn4XeWqRDLrQeuTuTYzud_Xwh5JPIg1iLVzDWkZKAtZ2muOYNCRynPUcI1bbOJZDIRe3tptka-97kwLqyyp4kNoTZz7WzkQxQzXC31FOJh0YVFZFvj50efmesg5TytfTuNFiI7dvkV1bf62fYW_uvHnI9fvRu9Zl2HAaYhFAtmYtRWoCiEcpW4YgORMOAbPxZgY0iiKNQmMBxXD4oLUyRxEmrOdaCLREFT9ADJ_zqK5MAHZD3bfpPtryw8zocGQdpl6vihGNbILV1GG48Yd7oh479ww6ZpwJ8k3d-8tA3zG1_5n4_tKrncidz0RXtHrpE1W26Q820TzuUGudjnZtfXyclbp-kzVCgc-g1dVDM2bQpzO_zStuw1dbZrujvKPvw4-TbKRlSVhtaH6uCA1Yh4S6eqpsjJcxTgKeoEdIl7ZpXrX0VxAaqktkm4pLOSfprjPqsljs8OndR_g7w_k6O4SQblvLS3CQUV-CoEFQeFBl4kqfWNzRXgBNZACB550mNFHrWlSGQTQhAK2SJLIrJkgyzJPfLSwWn1pisj3gzMq6nsqJJMuFB5YtMEBU_A74lIaAXK5mlcqIDnHtnsUSU72lbLU0h55OHqMVIl52pSpZ0ft-8kzngQeeRWC-LVSsCZHAB8jzztUX06-d83dOffa3lALiCw5e72ZOcuucTdHXNxR8kmGSyqY3uPnNNfFrO6ut9dU0o-njXEfwK5kHuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar-assisted+tri-generation+system+with+LCPV%E2%80%91CPC+and+small-scale+gas+turbine+for+year-round+clean+energy+in+hot-dry+climates&rft.jtitle=Scientific+reports&rft.au=Ben+Hamida%2C+Mohamed+Bechir&rft.au=Rasheed%2C+Rassol+Hamed&rft.au=Singh%2C+Narinderjit+Singh+Sawaran&rft.au=Taghavi%2C+Mohammad&rft.date=2025-10-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-21338-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_21338_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon