Solar-assisted tri-generation system with LCPV‑CPC and small-scale gas turbine for year-round clean energy in hot-dry climates
This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrat...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 36464 - 23 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
17.10.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO
2
emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO
2
emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m
2
average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings. |
|---|---|
| AbstractList | This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO
emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO
emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m
average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings. This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings. Abstract This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings. This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV–compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO 2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO 2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m 2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable–fossil energy applications in urban buildings. This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings.This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the hot-dry climatic conditions of Baghdad, Iraq. The proposed configuration couples a low‑concentration hybrid PV-compound parabolic concentrator (LCPV-CPC) with dual small‑scale gas turbines, high- and low-grade water-source heat pumps, and an ammonia-water absorption chiller, coordinated through a following-electric-load (FEL) strategy. The primary objectives are to maximize primary energy savings, annual cost reduction, CO2 emissions mitigation, and exergy efficiency by exploiting multi‑grade thermal integration and dispatch optimization. A methodological novelty lies in applying a Reference Vector Guided Evolutionary Algorithm (RVEA) with entropy‑weighted VIKOR analysis to achieve balanced trade‑offs among energy, economic, environmental, and thermodynamic criteria. Dynamic co‑simulation through Aspen HYSYS-MATLAB, validated against high‑quality experimental data, ensures predictive reliability. Results confirm substantial performance gains compared with a separate production facility: primary energy savings up to ~ 33%, annual cost savings exceeding 10% at favorable solar conditions, and CO2 emission reduction approaching 50%. Parametric analysis shows that increased solar irradiance significantly improves environmental and economic outcomes, with economic feasibility achieved beyond ~ 472 W/m2 average radiation. Exergy efficiency remains stable or slightly declines at high irradiance due to intensified off‑design irreversibilities. Optimal inlet water temperatures to the LCPV-CPC further enhance renewable contribution without notable thermodynamic penalties. The findings demonstrate a technically and economically viable pathway for sustainable tri‑generation in climates with strong solar resources and high cooling demand, offering a transferable optimization framework for future hybrid renewable-fossil energy applications in urban buildings. |
| ArticleNumber | 36464 |
| Author | Rasheed, Rassol Hamed Singh, Narinderjit Singh Sawaran Ben Hamida, Mohamed Bechir Taghavi, Mohammad |
| Author_xml | – sequence: 1 givenname: Mohamed Bechir surname: Ben Hamida fullname: Ben Hamida, Mohamed Bechir organization: Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU) – sequence: 2 givenname: Rassol Hamed surname: Rasheed fullname: Rasheed, Rassol Hamed organization: Advanced Technical College, University of Warith Al-Anbiyaa – sequence: 3 givenname: Narinderjit Singh Sawaran surname: Singh fullname: Singh, Narinderjit Singh Sawaran organization: Faculty of Data Science and Information Technology, INTI International University – sequence: 4 givenname: Mohammad surname: Taghavi fullname: Taghavi, Mohammad email: mohammad.taghavi.energy@gmail.com organization: Department of Mechanical Engineering, Faculty of Engineering, Shiraz Branch, Islamic Azad University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41107440$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1TAQhiNUREvpC7BAltiwCfgWx1miiEulI1GJy9aa2E7qo8QudqIqu74Cr8iT4HNSCmKBN_aMvvlnRv6fFic-eFsUzwl-TTCTbxInVSNLTKuSEsZkSR8VZxTzHDJKT_56nxYXKe1xPhVtOGmeFKecEFxzjs-Ku89hhFhCSi7N1qA5unKw3kaYXfAorTk7oVs3X6Nde_Xt592P9qpF4A1KE4xjmTSMFg2Q0LzEznmL-hDRarNmDEvG9GjBo4PisCLn0XWYSxPXnHcTzDY9Kx73MCZ7cX-fF1_fv_vSfix3nz5ctm93peZM5hLRkJr3vQRaVUIYXknDscFCcit4XVVMG2Jo02kOVJq-FjXTlGqi-xo4puy8uNx0TYC9uom5e1xVAKeOiRAHBXF2eVxVUwldbZsaC8Ebi2UlNXCwXSN6ILTLWq82rZsYvi82zWpySdtxBG_DkhSjgtZEclxl9OU_6D4s0edNj5TAuOEiUy_uqaWbrHkY7_c_ZYBugI4hpWj7B4RgdfCD2vygsh_U0Q_qsDLbilKG_WDjn97_qfoF4rW24w |
| Cites_doi | 10.1021/acs.est.4c03478 10.1016/j.solener.2023.112019 10.1016/j.renene.2018.09.027 10.1016/j.energy.2019.03.147 10.1016/j.ref.2024.100546 10.1016/j.enconman.2024.118246 10.1016/j.applthermaleng.2022.119648 10.1016/j.applthermaleng.2025.125834 10.1016/j.ijft.2024.100931 10.1016/j.enconman.2017.08.036 10.1016/j.energy.2024.133043 10.1016/j.energy.2023.129976 10.1109/JESTPE.2024.3409290 10.1016/j.rineng.2024.102646 10.1109/TEVC.2016.2519378 10.1016/j.psep.2023.03.023 10.1109/TEVC.2013.2281535 10.1016/j.ijepes.2022.108684 10.1016/j.scs.2023.104412 10.1016/j.psep.2023.06.037 10.1061/JSENDH.STENG-13476 10.1016/j.renene.2019.05.004 10.1016/j.jer.2024.04.023 10.1016/j.energy.2020.119096 10.1016/j.asej.2024.103088 10.1016/j.solener.2024.112756 10.1016/j.solener.2025.113612 10.1016/j.applthermaleng.2025.126246 10.1038/s41598-025-90377-6 10.1016/j.csite.2023.103911 10.1016/j.tsep.2023.101664 10.1016/j.renene.2024.121086 10.1016/j.est.2025.116750 10.1109/TSG.2022.3231590 10.1016/j.enconman.2023.117223 10.1016/j.enconman.2019.111942 10.1016/j.enconman.2019.111866 10.1016/j.ijhydene.2025.01.239 10.1016/j.apenergy.2025.126047 10.1038/s41598-024-54317-0 10.1038/s41598-025-90887-3 10.1016/j.ijhydene.2025.01.133 10.1016/j.energy.2022.125777 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-21338-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Economics |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_728ab7e9706649e0858ca4aeb96fa12b 41107440 10_1038_s41598_025_21338_2 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-d69174ff8a25566d458d40d0684e647553cd1d29bc4a28df7673c22c1cf7a4023 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597098000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 19:21:16 EST 2025 Sun Oct 19 01:52:00 EDT 2025 Sun Oct 19 01:10:36 EDT 2025 Tue Oct 21 01:43:27 EDT 2025 Sat Nov 29 07:09:32 EST 2025 Sun Oct 19 01:20:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Clean energy technology Low‑Concentration hybrid PV–Compound parabolic concentrator thermal Reference vector guided evolutionary algorithm Tri‑Generation plant Small‑Scale gas turbine generator |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-d69174ff8a25566d458d40d0684e647553cd1d29bc4a28df7673c22c1cf7a4023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/728ab7e9706649e0858ca4aeb96fa12b |
| PMID | 41107440 |
| PQID | 3262600946 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_728ab7e9706649e0858ca4aeb96fa12b proquest_miscellaneous_3262718405 proquest_journals_3262600946 pubmed_primary_41107440 crossref_primary_10_1038_s41598_025_21338_2 springer_journals_10_1038_s41598_025_21338_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-17 |
| PublicationDateYYYYMMDD | 2025-10-17 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 21338_CR10 Y Qin (21338_CR12) 2024; 305 Y Kong (21338_CR19) 2019; 132 J Wang (21338_CR13) 2019; 175 21338_CR35 J Wang (21338_CR43) 2023; 145 21338_CR14 K Deb (21338_CR36) 2014; 18 A Alfaris (21338_CR1) 2025; 15 MA Ismail (21338_CR11) 2025; 267 M Parvez (21338_CR32) 2024; 24 Y Chen (21338_CR21) 2024; 232 A Kharaghani (21338_CR18) 2024; 277 MK Manesh (21338_CR29) 2023; 263 Z Wang (21338_CR3) 2024; 14 M Herrando (21338_CR16) 2019; 143 SR Marjani (21338_CR2) 2025; 15 F Ren (21338_CR45) 2021; 215 X Mi (21338_CR34) 2025; 270 S Hassani (21338_CR24) 2025; 297 K Wang (21338_CR46) 2022; 14 A Basem (21338_CR4) 2024; 23 R Cheng (21338_CR37) 2016; 20 21338_CR40 T Wu (21338_CR27) 2024; 150 21338_CR41 X Zhou (21338_CR25) 2024; 309 21338_CR42 Z Zeng (21338_CR20) 2025; 13 YJ Song (21338_CR5) 2023; 264 B Mei (21338_CR23) 2025; 105 J Villarroel-Schneider (21338_CR33) 2023; 291 S Yi (21338_CR6) 2023; 91 L Yang (21338_CR38) 2019; 199 21338_CR28 X Zhao (21338_CR30) 2024; 290 M Badri (21338_CR15) 2025; 103 C Suresh (21338_CR7) 2024; 15 X Wang (21338_CR31) 2023; 219 J Song (21338_CR26) 2025; 393 M Zoghi (21338_CR22) 2024; 48 ME Palacios-Lorenzo (21338_CR39) 2024; 53 21338_CR8 A Almadhor (21338_CR9) 2025; 122 F Ren (21338_CR44) 2019; 197 S Yang (21338_CR17) 2017; 150 |
| References_xml | – ident: 21338_CR40 doi: 10.1021/acs.est.4c03478 – volume: 264 start-page: 112019 year: 2023 ident: 21338_CR5 publication-title: Sol. Energy doi: 10.1016/j.solener.2023.112019 – volume: 132 start-page: 1373 year: 2019 ident: 21338_CR19 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.09.027 – volume: 175 start-page: 1246 year: 2019 ident: 21338_CR13 publication-title: Energy doi: 10.1016/j.energy.2019.03.147 – volume: 48 start-page: 100546 year: 2024 ident: 21338_CR22 publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2024.100546 – volume: 305 start-page: 118246 year: 2024 ident: 21338_CR12 publication-title: Energy. Conv. Manag. doi: 10.1016/j.enconman.2024.118246 – ident: 21338_CR42 – volume: 219 start-page: 119648 year: 2023 ident: 21338_CR31 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119648 – volume: 267 start-page: 125834 year: 2025 ident: 21338_CR11 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2025.125834 – volume: 24 start-page: 100931 year: 2024 ident: 21338_CR32 publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2024.100931 – volume: 150 start-page: 375 year: 2017 ident: 21338_CR17 publication-title: Energy. Conv. Manag. doi: 10.1016/j.enconman.2017.08.036 – volume: 309 start-page: 133043 year: 2024 ident: 21338_CR25 publication-title: Energy doi: 10.1016/j.energy.2024.133043 – volume: 290 start-page: 129976 year: 2024 ident: 21338_CR30 publication-title: Energy doi: 10.1016/j.energy.2023.129976 – volume: 13 start-page: 1503 issue: 2 year: 2025 ident: 21338_CR20 publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2024.3409290 – volume: 23 start-page: 102646 year: 2024 ident: 21338_CR4 publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102646 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 21338_CR37 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – ident: 21338_CR28 doi: 10.1016/j.psep.2023.03.023 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 21338_CR36 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 145 start-page: 108684 year: 2023 ident: 21338_CR43 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108684 – volume: 91 start-page: 104412 year: 2023 ident: 21338_CR6 publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2023.104412 – ident: 21338_CR10 doi: 10.1016/j.psep.2023.06.037 – volume: 150 start-page: 05024004 issue: 12 year: 2024 ident: 21338_CR27 publication-title: J. Struct. Eng. doi: 10.1061/JSENDH.STENG-13476 – volume: 143 start-page: 637 year: 2019 ident: 21338_CR16 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.004 – ident: 21338_CR8 doi: 10.1016/j.jer.2024.04.023 – volume: 215 start-page: 119096 year: 2021 ident: 21338_CR45 publication-title: Energy doi: 10.1016/j.energy.2020.119096 – ident: 21338_CR41 – volume: 15 start-page: 103088 issue: 12 year: 2024 ident: 21338_CR7 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2024.103088 – volume: 277 start-page: 112756 year: 2024 ident: 21338_CR18 publication-title: Sol. Energy doi: 10.1016/j.solener.2024.112756 – volume: 297 start-page: 113612 year: 2025 ident: 21338_CR24 publication-title: Sol. Energy doi: 10.1016/j.solener.2025.113612 – volume: 270 start-page: 126246 year: 2025 ident: 21338_CR34 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2025.126246 – volume: 15 start-page: 9181 issue: 1 year: 2025 ident: 21338_CR1 publication-title: Sci. Rep. doi: 10.1038/s41598-025-90377-6 – volume: 53 start-page: 103911 year: 2024 ident: 21338_CR39 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103911 – ident: 21338_CR14 doi: 10.1016/j.tsep.2023.101664 – volume: 232 start-page: 121086 year: 2024 ident: 21338_CR21 publication-title: Renew. Energy doi: 10.1016/j.renene.2024.121086 – volume: 122 start-page: 116750 year: 2025 ident: 21338_CR9 publication-title: J. Energy Storage doi: 10.1016/j.est.2025.116750 – ident: 21338_CR35 – volume: 14 start-page: 2709 issue: 4 year: 2022 ident: 21338_CR46 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3231590 – volume: 291 start-page: 117223 year: 2023 ident: 21338_CR33 publication-title: Energy. Conv. Manag. doi: 10.1016/j.enconman.2023.117223 – volume: 199 start-page: 111942 year: 2019 ident: 21338_CR38 publication-title: Energy. Conv. Manag. doi: 10.1016/j.enconman.2019.111942 – volume: 197 start-page: 111866 year: 2019 ident: 21338_CR44 publication-title: Energy. Conv. Manag. doi: 10.1016/j.enconman.2019.111866 – volume: 105 start-page: 56 year: 2025 ident: 21338_CR23 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2025.01.239 – volume: 393 start-page: 126047 year: 2025 ident: 21338_CR26 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2025.126047 – volume: 14 start-page: 3812 issue: 1 year: 2024 ident: 21338_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-024-54317-0 – volume: 15 start-page: 6449 issue: 1 year: 2025 ident: 21338_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-025-90887-3 – volume: 103 start-page: 349 year: 2025 ident: 21338_CR15 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2025.01.133 – volume: 263 start-page: 125777 year: 2023 ident: 21338_CR29 publication-title: Energy doi: 10.1016/j.energy.2022.125777 |
| SSID | ssj0000529419 |
| Score | 2.4615078 |
| Snippet | This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply under the... Abstract This study develops, dynamically simulates, and optimizes an integrated tri‑generation system for year-round electricity, heating, and cooling supply... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 36464 |
| SubjectTerms | 639/4077/4072 639/4077/909 639/4077/909/4101 Alternative energy sources Carbon Carbon dioxide Carbon dioxide emissions Clean energy Clean energy technology Clean technology Climatic conditions Cooling Cooling systems Costs Economics Efficiency Electric rates Electricity Emissions Emissions control Energy conservation Energy consumption Energy transition Flexibility Gas turbines Greenhouse gases Heat exchangers Humanities and Social Sciences Hydrogen Low‑Concentration hybrid PV–Compound parabolic concentrator thermal multidisciplinary Natural gas Optimization algorithms Optimization techniques Reference vector guided evolutionary algorithm Renewable resources Science Science (multidisciplinary) Small‑Scale gas turbine generator Solar energy Solar radiation Systems stability Thermodynamics Tri‑Generation plant Turbines Water temperature |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggODCo0AJFGQkbmA1cSaxc0KwouIA1Uo81Jvl2M52pTYpybbS3voX-Iv8Emby2ArxuHBNLMfRN-P5xuOZYeyFLpPc6cIJakgpwAUpitJJAZXLClkiw_VDswl1cKAPD4v5eODWjdcqpz2x36h94-iMfA9pBtVSLyB_ffpNUNcoiq6OLTSusmvIbBK60vVRzjdnLBTFgqQYc2XiVO91aK8op0xmQpJ3JuQv9qgv2_8nrvlbnLQ3P_t3_nfhd9ntkXjyN4Ok3GNXQr3NbgytKNfb7OaUodzdZxefyN8VSKtJBjxftUux6MtTE4p8KP7M6QSXf5jNv_64-D6bz7itPe9O7PGx6BD3wBe242jP0PMOHJkxX6NOiZa6OHFcgK156NMO-bLmR81K-HaNz5cnxH0fsC_77z7P3ouxU4NwkGockqPXB1WlLVU0yz1k2kPs41xDyEFlWep84iVKAVipfaVylTopXeIqZdGDTR-yrbqpwyPGwSaxTcHmSeVAVqoIsQ-lBZwgeEghYi8nvMzpUJDD9IH0VJsBXYPomh5dIyP2liDdjKRi2v2Dpl2YUTeNktqWKhQK6Rfg93SmnQUbyiKvbCLLiO1OyJpRwztzCWvEnm9eo25SwMXWoTkbxihyobOI7QyCtFkJkOMNEEfs1SRZl5P__Yce_3stT9gtScJNV27ULttatWfhKbvuzlfLrn3Wa8dPIyYWRw priority: 102 providerName: ProQuest |
| Title | Solar-assisted tri-generation system with LCPV‑CPC and small-scale gas turbine for year-round clean energy in hot-dry climates |
| URI | https://link.springer.com/article/10.1038/s41598-025-21338-2 https://www.ncbi.nlm.nih.gov/pubmed/41107440 https://www.proquest.com/docview/3262600946 https://www.proquest.com/docview/3262718405 https://doaj.org/article/728ab7e9706649e0858ca4aeb96fa12b |
| Volume | 15 |
| WOSCitedRecordID | wos001597098000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBYkL4p9AWRmJG1hNnElsH-mqFUh0FfGn5RQ5tlNWarNos0XaW1-BV-RJmIl3lyJAXLj44FiO7W8mMxPb3zD2TDdZ6bRxghJSCnBBCtM4KaB1hZENerg-JptQk4meTk11KdUXnQmL9MBx4faV1LZRwSi0jWACegjaWbChMWVrM9nQ1zdV5lIwFVm9pYHMrG_JpLne79FS0W0yWQhJcZmQv1iigbD_T17mbzukg-E5usVurj1G_jKO9Da7Ero77HrMIbm6yy7eUXAq0AcmwDxfLmbiZOCSpiXnkamZ0-9W_mZcffx-8W1cjbntPO_P7Omp6BGkwE9sz9H4YJgcOLqxfIUKIBaUconjS23Hw3BHkM86_nm-FH6xwvrZGTmq99iHo8P341dinVZBOMg1NikxRIO21Zbox0oPhfaQ-rTUEEpQRZE7n3mJkIGV2reqVLmT0mWuVRbDzfw-2-nmXXjIONgstTnYMmsdyFYhPj40FrCD4CGHhD3fLHH9JbJn1MOud67rCEiNgNQDILVM2AGhsG1JzNdDBcpDvZaH-l_ykLC9DYb1Wh37Gn1UIuI3UCbs6fYxKhLtjtguzM9jG0XxbpGwBxH77UiAomSANGEvNsLws_O_T-jR_5jQY3ZDktTSKRq1x3aWi_PwhF1zX5ezfjFiV9VUDaUesd2Dw0n1djSoApbHsqJSYblbvT6uPv0A6G0LvA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAioXHuXRQAEjwQmsbpxJ4hwQgoWqVZfVShTUm3FsZ7tSmy3JFrS3_gX-CD-KX8JMstkK8bj1wNWJnLHzeZ6eGcaeqDxMrMqsoIaUAqyXIsutFFDYOJM5ariubTaRDofq4CAbrbDvXS4MXavseGLDqN3Uko98C9UMqqWeQfLy5LOgrlEUXe1aaLSw2PPzr2iy1S923-D_fSrl9tv9_o5YdBUQFiI1Ey5BCwWKQhmqvpU4iJWDnuslCnwCaRxH1oVOIsVgpHJFmqSRldKGtkgNNIUOkOVfAqosRlcF5Wjp06GoGYTZIjenF6mtGuUj5bDJWEiyBoX8Rf41bQL-pNv-FpdtxN329f9to26wawvFmr9qT8JNtuLLdXalbbU5X2drXQZ2fYudvSd7XqDZQBh3fFZNxLgpv00o5W1xa04eaj7ojz7-OPvWH_W5KR2vj83RkagR156PTc1RXueopnPU_Pkc1ywq6lLFkQBTct-kVfJJyQ-nuM5qjuOTY9Ltb7MPF7IVd9hqOS39BuNgwp6JwCRhYUEWaeZ7zucGcALvIIKAPevwoU_agiO6uSgQKd2iSSOadIMmLQP2miC0fJOKhTcD02qsF7xHp1KZPPVZiuol4PdUrKwB4_MsKUwo84BtdkjSCw5W63MYBezx8jHyHgoomdJPT9t3UnIRxAG72wJ3SQmQYwEPScCed0g-n_zvC7r3b1oesbWd_XcDPdgd7t1nVyUdLLpelG6y1Vl16h-wy_bLbFJXD5uTydmni0b4T3PRcVs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGLaqKduFpWyBAkaCE1iTOH8S54AQTBlRtYwisag9Gcd2hpHaTEmmoLn1FXgdHocn4XeWqRDLrQeuTuTYzud_Xwh5JPIg1iLVzDWkZKAtZ2muOYNCRynPUcI1bbOJZDIRe3tptka-97kwLqyyp4kNoTZz7WzkQxQzXC31FOJh0YVFZFvj50efmesg5TytfTuNFiI7dvkV1bf62fYW_uvHnI9fvRu9Zl2HAaYhFAtmYtRWoCiEcpW4YgORMOAbPxZgY0iiKNQmMBxXD4oLUyRxEmrOdaCLREFT9ADJ_zqK5MAHZD3bfpPtryw8zocGQdpl6vihGNbILV1GG48Yd7oh479ww6ZpwJ8k3d-8tA3zG1_5n4_tKrncidz0RXtHrpE1W26Q820TzuUGudjnZtfXyclbp-kzVCgc-g1dVDM2bQpzO_zStuw1dbZrujvKPvw4-TbKRlSVhtaH6uCA1Yh4S6eqpsjJcxTgKeoEdIl7ZpXrX0VxAaqktkm4pLOSfprjPqsljs8OndR_g7w_k6O4SQblvLS3CQUV-CoEFQeFBl4kqfWNzRXgBNZACB550mNFHrWlSGQTQhAK2SJLIrJkgyzJPfLSwWn1pisj3gzMq6nsqJJMuFB5YtMEBU_A74lIaAXK5mlcqIDnHtnsUSU72lbLU0h55OHqMVIl52pSpZ0ft-8kzngQeeRWC-LVSsCZHAB8jzztUX06-d83dOffa3lALiCw5e72ZOcuucTdHXNxR8kmGSyqY3uPnNNfFrO6ut9dU0o-njXEfwK5kHuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar-assisted+tri-generation+system+with+LCPV%E2%80%91CPC+and+small-scale+gas+turbine+for+year-round+clean+energy+in+hot-dry+climates&rft.jtitle=Scientific+reports&rft.au=Ben+Hamida%2C+Mohamed+Bechir&rft.au=Rasheed%2C+Rassol+Hamed&rft.au=Singh%2C+Narinderjit+Singh+Sawaran&rft.au=Taghavi%2C+Mohammad&rft.date=2025-10-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-21338-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_21338_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |