Counterexamples in scale calculus

We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 116; H. 18; S. 8787
Hauptverfasser: Filippenko, Benjamin, Zhou, Zhengyi, Wehrheim, Katrin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 30.04.2019
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.
AbstractList We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.
We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.
Author Wehrheim, Katrin
Filippenko, Benjamin
Zhou, Zhengyi
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Filippenko
  fullname: Filippenko, Benjamin
  organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840
– sequence: 2
  givenname: Zhengyi
  surname: Zhou
  fullname: Zhou, Zhengyi
  organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840
– sequence: 3
  givenname: Katrin
  surname: Wehrheim
  fullname: Wehrheim, Katrin
  email: wehrheim@berkeley.edu
  organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840 wehrheim@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30979800$$D View this record in MEDLINE/PubMed
BookMark eNpNjztLBDEUhYOsuA-t7WTtbGa9NxkzuaUMvmDBRushTxjJPJxMQP-9C65gc75TfBw4a7boh94zdomwQ6jE7djrtEOFWAEiyhO2QiAsZEmw-NeXbJ3SBwDQnYIzthRAFSmAFbuuh9zPfvJfuhujT9u23yaro98ewuaY0zk7DTomf3Hkhr0_PrzVz8X-9emlvt8XthRqLoywRhopg3MVkdSkqUQiJ1xJGhynYKTmBr2ywZLlKgjvjAgi8ABCWL5hN7-74zR8Zp_mpmuT9THq3g85NZwDSUDBy4N6dVSz6bxrxqnt9PTd_N3iP3fQUM8
CitedBy_id crossref_primary_10_1007_s00029_021_00680_z
crossref_primary_10_1112_plms_12369
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1811701116
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 30979800
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c438t-b3cb6b66fdd7996a9a94199d3d49a0d29fb6a2b1e8cfc9c28f3edb3f3f2f033c2
IEDL.DBID 7X8
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466446500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 14:02:24 EDT 2025
Wed Feb 19 02:31:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords scale calculus
polyfold theory
inverse function theorem
implicit function theorem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b3cb6b66fdd7996a9a94199d3d49a0d29fb6a2b1e8cfc9c28f3edb3f3f2f033c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30979800
PQID 2209601324
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2209601324
pubmed_primary_30979800
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
SSID ssj0009580
Score 2.335428
Snippet We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8787
Title Counterexamples in scale calculus
URI https://www.ncbi.nlm.nih.gov/pubmed/30979800
https://www.proquest.com/docview/2209601324
Volume 116
WOSCitedRecordID wos000466446500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXhR67O-2IIHPcTuJukmcxIRiwctPaj0VvKEXrbVVPHnm-ym6EUQvOSUQJhkJt_MZL5B6JxY7ZgKitTvO4sZV4AlYxRbyykxfdC6ZmJ6eeDDoRiPYZQCbj59q1zaxNpQm5mOMfIeIRFsB9-JXc9fcewaFbOrqYXGKmrRAGXily4-Fj9Id0XDRgAFLhnkS2ofTnvzSvqrIlZZxmbr5e_4sn5nBlv_3eE22kwIM7tprkQbrdhqB7WTDvvsIhFNX-6ibixID3K1nzJyBPtsWmU-nJnNwhDDgn4PPQ_unm7vcWqZgDWjYoEV1apUZemM4cGTkSCBFQCGGgYyNwScKiVRhRXaadBEOGqNoo464nJKNdlHa9Wssoco42ESI46AyiUjSkipLNOCG8plwEysg7pLMUzClYx5BlnZ2buffAuigw4aWU7mDXfGhObAIYDUoz-sPkYbAZ6k3M0JarmgkPYUreuPxdS_ndVnHcbh6PEL05azRg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterexamples+in+scale+calculus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Filippenko%2C+Benjamin&rft.au=Zhou%2C+Zhengyi&rft.au=Wehrheim%2C+Katrin&rft.date=2019-04-30&rft.eissn=1091-6490&rft.volume=116&rft.issue=18&rft.spage=8787&rft_id=info:doi/10.1073%2Fpnas.1811701116&rft_id=info%3Apmid%2F30979800&rft_id=info%3Apmid%2F30979800&rft.externalDocID=30979800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon