Counterexamples in scale calculus
We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calcu...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 116; H. 18; S. 8787 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
30.04.2019
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory. |
|---|---|
| AbstractList | We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory. We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs-the local models for scale-Fredholm maps-vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory. |
| Author | Wehrheim, Katrin Filippenko, Benjamin Zhou, Zhengyi |
| Author_xml | – sequence: 1 givenname: Benjamin surname: Filippenko fullname: Filippenko, Benjamin organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840 – sequence: 2 givenname: Zhengyi surname: Zhou fullname: Zhou, Zhengyi organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840 – sequence: 3 givenname: Katrin surname: Wehrheim fullname: Wehrheim, Katrin email: wehrheim@berkeley.edu organization: Polyfold Laboratory, University of California, Berkeley, CA 94720-3840 wehrheim@berkeley.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30979800$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjztLBDEUhYOsuA-t7WTtbGa9NxkzuaUMvmDBRushTxjJPJxMQP-9C65gc75TfBw4a7boh94zdomwQ6jE7djrtEOFWAEiyhO2QiAsZEmw-NeXbJ3SBwDQnYIzthRAFSmAFbuuh9zPfvJfuhujT9u23yaro98ewuaY0zk7DTomf3Hkhr0_PrzVz8X-9emlvt8XthRqLoywRhopg3MVkdSkqUQiJ1xJGhynYKTmBr2ywZLlKgjvjAgi8ABCWL5hN7-74zR8Zp_mpmuT9THq3g85NZwDSUDBy4N6dVSz6bxrxqnt9PTd_N3iP3fQUM8 |
| CitedBy_id | crossref_primary_10_1007_s00029_021_00680_z crossref_primary_10_1112_plms_12369 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1811701116 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 30979800 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ |
| ID | FETCH-LOGICAL-c438t-b3cb6b66fdd7996a9a94199d3d49a0d29fb6a2b1e8cfc9c28f3edb3f3f2f033c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466446500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 14:02:24 EDT 2025 Wed Feb 19 02:31:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | scale calculus polyfold theory inverse function theorem implicit function theorem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-b3cb6b66fdd7996a9a94199d3d49a0d29fb6a2b1e8cfc9c28f3edb3f3f2f033c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30979800 |
| PQID | 2209601324 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2209601324 pubmed_primary_30979800 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-04-30 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2019 |
| SSID | ssj0009580 |
| Score | 2.335428 |
| Snippet | We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus-a generalization of multivariable... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 8787 |
| Title | Counterexamples in scale calculus |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30979800 https://www.proquest.com/docview/2209601324 |
| Volume | 116 |
| WOSCitedRecordID | wos000466446500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXhR67O-2IIHPcTuJukmcxIRiwctPaj0VvKEXrbVVPHnm-ym6EUQvOSUQJhkJt_MZL5B6JxY7ZgKitTvO4sZV4AlYxRbyykxfdC6ZmJ6eeDDoRiPYZQCbj59q1zaxNpQm5mOMfIeIRFsB9-JXc9fcewaFbOrqYXGKmrRAGXily4-Fj9Id0XDRgAFLhnkS2ofTnvzSvqrIlZZxmbr5e_4sn5nBlv_3eE22kwIM7tprkQbrdhqB7WTDvvsIhFNX-6ibixID3K1nzJyBPtsWmU-nJnNwhDDgn4PPQ_unm7vcWqZgDWjYoEV1apUZemM4cGTkSCBFQCGGgYyNwScKiVRhRXaadBEOGqNoo464nJKNdlHa9Wssoco42ESI46AyiUjSkipLNOCG8plwEysg7pLMUzClYx5BlnZ2buffAuigw4aWU7mDXfGhObAIYDUoz-sPkYbAZ6k3M0JarmgkPYUreuPxdS_ndVnHcbh6PEL05azRg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterexamples+in+scale+calculus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Filippenko%2C+Benjamin&rft.au=Zhou%2C+Zhengyi&rft.au=Wehrheim%2C+Katrin&rft.date=2019-04-30&rft.eissn=1091-6490&rft.volume=116&rft.issue=18&rft.spage=8787&rft_id=info:doi/10.1073%2Fpnas.1811701116&rft_id=info%3Apmid%2F30979800&rft_id=info%3Apmid%2F30979800&rft.externalDocID=30979800 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |