ADN source-load-storage cooperative two-layer optimal allocation based on ICSQPSO algorithm

Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal natu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 38866 - 22
Hlavní autori: Li, Xiaobang, Zhang, Kang, Zhao, Liying, Zhu, Liying, Lu, Zongqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 06.11.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..
AbstractList Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..
Abstract Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model’s validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..
Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model's validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It is evolving into a two-way interactive, multi-dimensional, and coordinated active distribution network (ADN). The stochastic and temporal nature of distributed generation (DG) output presents challenges. The volatility of loads also presents challenges. These factors pose significant challenges to ADN resource allocation and operation regulation. To address these challenges, a two-layer optimization method is proposed. This method focuses on ADN source-load-storage coordination. It incorporates demand response. The upper planning layer determines the near global optimum device siting and capacity setting scheme. This is within the active distribution network. The lower operation layer derives the near global optimum scheduling scheme for each flexible resource. This includes demand response loads. The two-layer planning problem has inherent complexity. To manage this complexity, an improved algorithm, called cuckoo search quantum behavioural particle swarm optimization (ICSQPSO), is introduced. The model's validity is demonstrated through an example, indicating a potential reduction in operating costs by 49.7%, a decrease in total investment and operating costs by 37.1%, and a reduction in the wind curtailment rate by 0.4% and the solar power curtailment rate by 1.5%. The effectiveness of the model and algorithm is verified. This verification uses simulation with the IEEE33 algorithm..
ArticleNumber 38866
Author Lu, Zongqiang
Li, Xiaobang
Zhang, Kang
Zhao, Liying
Zhu, Liying
Author_xml – sequence: 1
  givenname: Xiaobang
  surname: Li
  fullname: Li, Xiaobang
  organization: Hebei Petroleum University of Technology
– sequence: 2
  givenname: Kang
  surname: Zhang
  fullname: Zhang, Kang
  email: forkangkang@126.com
  organization: Hebei Petroleum University of Technology
– sequence: 3
  givenname: Liying
  surname: Zhao
  fullname: Zhao, Liying
  organization: Hebei Petroleum University of Technology
– sequence: 4
  givenname: Liying
  surname: Zhu
  fullname: Zhu, Liying
  organization: Hebei Petroleum University of Technology
– sequence: 5
  givenname: Zongqiang
  surname: Lu
  fullname: Lu, Zongqiang
  organization: Hebei Petroleum University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41198713$$D View this record in MEDLINE/PubMed
BookMark eNp9kcluFDEQhi0URELIC3BALXHh4uC97WM0bCNFCShw4mB5qR561NMe7B5Q3h5nOgvKIb647Prqd7n-l-hgTCMg9JqSU0q4fl8ElUZjwiRmTAmK9TN0xIioR87YwX_xITopZU3qkswIal6gQ0Gp0S3lR-jn2YeLpqRdDoCH5CIuU8puBU1IaQvZTf0faKa_CQ_uGnKTtlO_cUPjhiGFmkxj412B2NRgubj69vXqsuZWKffTr80r9LxzQ4GT2_0Y_fj08fviCz6__LxcnJ3jILiesGdt9DyqIIkRkRCjHIudVr4NLSglmfSCy0B8q3zHWEU8JY61QLiQhgd-jJazbkxubbe5dpivbXK93V-kvLIuT30YwGruTIgteOK04F556KIIXEcjmOiMqVrvZq1tTr93UCa76UuAYXAjpF2xnCmjhKmzrOjbR-i6znGsP91TkmkidKXe3FI7v4F4396dBRVgMxByKiVDd49QYm-strPVtlpt91bbG1U-F5UKjyvID28_UfUPZ3KpEA
Cites_doi 10.1109/ACCESS.2024.3458410
10.1016/j.egyr.2023.03.116
10.1016/j.scs.2023.105107
10.1049/rpg2.12325
10.1016/j.energy.2023.127761
10.1016/j.energy.2020.118263
10.1002/tee.24015
10.1061/(ASCE)EY.1943-7897.0000808
10.1109/TPWRS.2020.3032830
10.1109/ACCESS.2024.3368629
10.1016/j.egyr.2020.11.228
10.1109/ACCESS.2019.2962276
10.3390/en15041540
10.1016/j.energy.2023.127087
10.1016/j.energy.2024.133036
10.1016/j.ijepes.2022.108859
10.1109/TPWRS.2006.889132
10.1016/j.energy.2022.123226
10.3390/en16031356
10.3389/fenrg.2022.1012581
10.1016/j.ijepes.2022.108641
10.1016/j.energy.2020.118488
10.1016/j.energy.2024.132601
10.1016/j.segan.2024.101309
10.1016/j.egyr.2021.06.050
10.1016/j.energy.2023.129725
10.1109/TSTE.2021.3053559
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-22641-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_83a9cd7eb0a843b6befd4c38d9424f99
41198713
10_1038_s41598_025_22641_8
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-b27db3d6c5094d0096a2df86b7c7e66525b435c0b76bf224d0b10a27e034593c3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610752800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 19:21:46 EST 2025
Fri Nov 07 23:27:04 EST 2025
Fri Nov 07 14:48:34 EST 2025
Mon Nov 10 01:42:04 EST 2025
Thu Nov 13 04:30:20 EST 2025
Fri Nov 07 01:15:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ICSQPSO algorithm
Demand response
Economical analysis
Active distribution network
Collaborative planning
Distributed power
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-b27db3d6c5094d0096a2df86b7c7e66525b435c0b76bf224d0b10a27e034593c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3269528048?pq-origsite=%requestingapplication%
PMID 41198713
PQID 3269528048
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_83a9cd7eb0a843b6befd4c38d9424f99
proquest_miscellaneous_3269649005
proquest_journals_3269528048
pubmed_primary_41198713
crossref_primary_10_1038_s41598_025_22641_8
springer_journals_10_1038_s41598_025_22641_8
PublicationCentury 2000
PublicationDate 2025-11-06
PublicationDateYYYYMMDD 2025-11-06
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References T Cheng (22641_CR15) 2022; 148
22641_CR22
T Ding (22641_CR12) 2021; 36
X Huang (22641_CR23) 2020; 8
A Selvakumar (22641_CR25) 2007; 22
A Salari (22641_CR2) 2024; 288
22641_CR18
B Ahmadisourenabadi (22641_CR8) 2024; 308
A Alhendi (22641_CR13) 2023; 9
YX Hu (22641_CR14) 2023; 145
MA Magzoub (22641_CR24) 2022; 15
C Wang (22641_CR26) 2024; 307
N Huang (22641_CR1) 2023; 278
J Liu (22641_CR21) 2020; 213
Y Lu (22641_CR27) 2023; 271
S Deshmukh (22641_CR7) 2024; 12
22641_CR11
MS Jonban (22641_CR5) 2024; 38
Z Jiang (22641_CR6) 2021; 7
Y Li (22641_CR4) 2022; 245
R Xie (22641_CR19) 2020; 6
Y Zhou (22641_CR17) 2020; 207
Y Mi (22641_CR16) 2023; 16
M Moradi-Sepahvand (22641_CR9) 2023; 147
K Ibrahim (22641_CR10) 2020; 27
B Zhu (22641_CR28) 2024; 12
J Hossain (22641_CR3) 2024; 101
H Qiu (22641_CR20) 2021; 12
References_xml – volume: 12
  start-page: 131350
  year: 2024
  ident: 22641_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3458410
– volume: 9
  start-page: 4799
  year: 2023
  ident: 22641_CR13
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.03.116
– volume: 101
  year: 2024
  ident: 22641_CR3
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2023.105107
– ident: 22641_CR11
  doi: 10.1049/rpg2.12325
– volume: 278
  year: 2023
  ident: 22641_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127761
– volume: 207
  year: 2020
  ident: 22641_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118263
– ident: 22641_CR22
  doi: 10.1002/tee.24015
– volume: 148
  start-page: 4021068
  year: 2022
  ident: 22641_CR15
  publication-title: J. Energy Eng.
  doi: 10.1061/(ASCE)EY.1943-7897.0000808
– volume: 36
  start-page: 2281
  year: 2021
  ident: 22641_CR12
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3032830
– volume: 12
  start-page: 29607
  year: 2024
  ident: 22641_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3368629
– volume: 6
  start-page: 370
  year: 2020
  ident: 22641_CR19
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.228
– volume: 8
  start-page: 2272
  year: 2020
  ident: 22641_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962276
– volume: 15
  start-page: 1540
  year: 2022
  ident: 22641_CR24
  publication-title: Energies
  doi: 10.3390/en15041540
– volume: 271
  year: 2023
  ident: 22641_CR27
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127087
– volume: 308
  year: 2024
  ident: 22641_CR8
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133036
– volume: 147
  year: 2023
  ident: 22641_CR9
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108859
– volume: 22
  start-page: 42
  year: 2007
  ident: 22641_CR25
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.889132
– volume: 245
  year: 2022
  ident: 22641_CR4
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123226
– volume: 16
  start-page: 1356
  year: 2023
  ident: 22641_CR16
  publication-title: Energies
  doi: 10.3390/en16031356
– ident: 22641_CR18
  doi: 10.3389/fenrg.2022.1012581
– volume: 145
  year: 2023
  ident: 22641_CR14
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108641
– volume: 213
  year: 2020
  ident: 22641_CR21
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118488
– volume: 307
  year: 2024
  ident: 22641_CR26
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132601
– volume: 38
  year: 2024
  ident: 22641_CR5
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2024.101309
– volume: 7
  start-page: 314
  year: 2021
  ident: 22641_CR6
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.06.050
– volume: 288
  year: 2024
  ident: 22641_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129725
– volume: 12
  start-page: 1525
  year: 2021
  ident: 22641_CR20
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3053559
– volume: 27
  start-page: 1654
  year: 2020
  ident: 22641_CR10
  publication-title: Teh. Vjesn.
SSID ssj0000529419
Score 2.4637423
Snippet Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is changing. It...
Abstract Smart grid technology continues to advance. Renewable energy sees extensive application. The traditional one-way passive distribution network is...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 38866
SubjectTerms 639/4077/4079
639/4077/4082
639/4077/909
Active distribution network
Algorithms
Alternative energy sources
Collaboration
Collaborative planning
Decision making
Demand response
Distributed power
Economical analysis
Energy resources
Energy storage
Humanities and Social Sciences
ICSQPSO algorithm
Integrated approach
multidisciplinary
Network management systems
Operating costs
Optimization
Renewable energy
Renewable resources
Resource allocation
Scheduling
Science
Science (multidisciplinary)
Solar power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEB6kKPgitd62VlnBNw3d3DbJY60WBTlWqlLwIeS2WmjPlnO2iv_eyWbPaUXFF9-WTQjJfElmMpP5AvBUii6J5BTxMhoimFDEaMYJrnEe245SN0bPP71Vs5k-PjaHV576ynfCCj1wEdyu5s6EqJJvnBbctz51UQSuo8GGOzOm7qHVc-UwVVi9mRHUTFkyDde7S9RUOZuMSZJzRynRv2iikbD_T1bmbxHSUfEcbMKtyWKs90pPb8O1NN-CG-UNyR934PPey1ldXPDktHeR5OuOuEnUoe_PU-H1rofvPTl1aF3XPW4RZ9hcjrcXb12dFVms8ePN_tH7w6N3WPalX5wMX8_uwseDVx_2X5PpxQQSBNcD8UxFjzIOmRYv5uOJY7HTrVdBpbaVTHo0j0LjVes7VN6x8bRxTKWGC2l44PdgY97P0wOotQnUUU6Dl1wYH7WWOoWkEb_Ou5AqeLaSnj0vxBh2DGhzbYusLcrajrK2uoIXWcDrmpnUevyBUNsJavsvqCvYWcFjp5W2tGh-Gsk0bkQVPFkX4xrJgQ83T_1FqdMKg7OigvsF1nVPBM1uF8oreL7C-bLxvw9o-38M6CHcZHlCZi91uwMbw-IiPYLr4dtwslw8Hmf0TwcQ9-o
  priority: 102
  providerName: Directory of Open Access Journals
Title ADN source-load-storage cooperative two-layer optimal allocation based on ICSQPSO algorithm
URI https://link.springer.com/article/10.1038/s41598-025-22641-8
https://www.ncbi.nlm.nih.gov/pubmed/41198713
https://www.proquest.com/docview/3269528048
https://www.proquest.com/docview/3269649005
https://doaj.org/article/83a9cd7eb0a843b6befd4c38d9424f99
Volume 15
WOSCitedRecordID wos001610752800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RXZB44T4CZRUk3sBqfCS2n1BbWlGJLoECWsRD5CttpXaz7G5B_HvGSXYrxPHCyyiKrcjJfHNkxp4BeJaLOohgJLG510QwIYlWjBOUce6LmlLTZs8_vZHjsZpMdNkH3Bb9tsqVTmwVtW9cjJFvoZuhc6YQcC9nX0nsGhWzq30LjQ0YxkplYgDDnb1x-X4dZYl5LEF1f1om42prgRYrnipjOYlnSClRv1iktnD_n7zN3zKlrQHav_m_S78FN3rXM93usHIbroTpHbjWNaP8cRe-bL8ap10sn5w1xpO4bxK1TeqaZha6AuHp8ntDzgy66WmDuuYcHxcT913YL40W0ad4cbB79K48eotjx7iO5cn5Pfi4v_dh9zXpWy8QJ7haEsukt8gsF-vr-fifY5ivVWGlk6EocpZb9LNcZmVha_QCfGZpZpgMGRe55o7fh8G0mYaHkCrtqKGcOptzoa1XKlfBBYVAqK1xIYHnq89fzboKG1WbGeeq6phVIbOqllmVSmAncmg9M1bHbm808-OqF7ZKcaOdl8FmRgluCxtqLxxXXiMYa60T2FwxqupFdlFdcimBp-thFLaYQTHT0Fx0cwqhEVYJPOhwsV6JoDF-Q3kCL1ZAuXz431_o0b_X8hius4jVGMguNmGwnF-EJ3DVfVueLuYj2JAT2VI16qE_aqMKSA9ZGalEOiwPDsvPPwFfeQzP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQIEhwAquJ7cT2AaHSUnXUYShqi0biYLylILWTYWZK1T_Fb-Q5mUyFWG49cIsSy7Lj7y1-K8CzgleBByOILbwinHJBlKSMII0zX1Z5bhrv-ce-GAzkcKh2luBHlwsTwyo7ntgwal-7aCNfRTVDFVQi4F6Pv5HYNSp6V7sWGi0stsPpCV7Zpq96G3i-zyndfLu3vkXmXQWI40zOiKXCW1yHi6XjfFThDfWVLK1wIpRlQQuLKoTLrChthQLOZzbPDBUhY7xQzDGc9wJcRD4uYgiZGIqFTSd6zXiu5rk5GZOrU5SPMYeNFiRmrOZE_iL_mjYBf9Jtf_PLNuJu8_r_9qNuwLW5Yp2utZRwE5bC6BZcblttnt6GT2sbg7T1VJDD2ngSo0KRl6aursehLX-ezk5qcmjwEpLWyEmPcLoYltAaNdMo732KD7313Q87u-_x2wHue_bl6A7sn8vO7sLyqB6F-5BK5XKTs9zZgnFlvZSFDC5IhHlljQsJvOiOW4_b-iG68fszqVtwaASHbsChZQJvIiIWI2Pt7-ZFPTnQc1aiJTPKeRFsZiRntrSh8twx6RWSWqVUAisdMPScIU31GSoSeLr4jKwk-ofMKNTH7ZiSK4RxAvdaHC5WwvNoncpZAi87YJ5N_vcNPfj3Wp7Ala29d33d7w22H8JVGukkmuzLFVieTY7DI7jkvs--TiePG0JL4fN5A_YniylgZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQIEhwAquJl8Q-IFQ6jBi1DINKUSUOwVsKUjsZZlKq_jV-Hc9ZpkIstx64RYll2fH3Fr8V4Ingpede58QIpwinPCdKUkaQxpnLyjTVjff843Y-Hsu9PTVZgR99LkwIq-x5YsOoXWWDjXwd1QwlqAxlZssuLGIyGL6cfSOhg1TwtPbtNFqIbPmTY7y-LV6MBnjWTykdvv6w-YZ0HQaI5UzWxNDcGVyTDWXkXFDnNXWlzExuc59lggqD6oRNTJ6ZEoWdS0yaaJr7hHGhmGU47zk4n3MhAnW9pZOlfSd40HiqujydhMn1BcrKkM9GBQnZqymRv8jCpmXAn_Tc33y0jegbXv2ff9o1uNIp3PFGSyHXYcVPb8DFtgXnyU34tDEYx60HgxxU2pEQLYo8NrZVNfNtWfS4Pq7IgcbLSVwhhz3E6UK4QmvsjIMe4GJ8GG3uvJ_svMNv-7jv-svhLdg9k53dhtVpNfV3IZbKpjplqTWCcWWclEJ66yXCvzTa-gie9UdfzNq6IkUTD8Bk0QKlQKAUDVAKGcGrgI7lyFATvHlRzfeLjsUUkmllXe5NoiVnJjO-dNwy6RSSYKlUBGs9SIqOUS2KU4RE8Hj5GVlM8Bvpqa-O2jEZVwjpCO60mFyuhKfBapWyCJ73ID2d_O8buvfvtTyCS4jTYns03roPl2kgmWDJz9ZgtZ4f-QdwwX6vvy7mDxuai-HzWeP1J3k7aTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADN+source-load-storage+cooperative+two-layer+optimal+allocation+based+on+ICSQPSO+algorithm&rft.jtitle=Scientific+reports&rft.au=Li%2C+Xiaobang&rft.au=Zhang%2C+Kang&rft.au=Zhao%2C+Liying&rft.au=Zhu%2C+Liying&rft.date=2025-11-06&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-22641-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon