Restoration of Degraded Images Using Pupil-Size Diversity Technology With Stochastic Parallel Gradient Descent Algorithm
The performance of imaging systems is inevitably degraded by aberrations of optical systems. Furthermore, images detected by long-distance imaging schemes also suffer blurring induced by atmospheric turbulence. To address this problem, we propose and demonstrate an aberration-free imaging procedure...
Uloženo v:
| Vydáno v: | IEEE photonics journal Ročník 8; číslo 2; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1943-0655, 1943-0647 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The performance of imaging systems is inevitably degraded by aberrations of optical systems. Furthermore, images detected by long-distance imaging schemes also suffer blurring induced by atmospheric turbulence. To address this problem, we propose and demonstrate an aberration-free imaging procedure in this paper, which is termed pupil-size diversity technology. With no additional optical element, the reported technique first acquires several intensity images only by simply resizing the pupil of an imaging system. The spatial difference of pupil areas generates pupil diversity. Then, based on the nonlinear optimization method, a high-quality image eliminating distortions can be reconstructed by processing the multiple diversity images with the stochastic parallel gradient descent algorithm. Comparative results of simulations and experiments, for correcting inner and external aberrations, respectively, verify the validity. The proposed technology in this paper may provide an alternative for adaptive optics systems and find wide applications in computational photography and remote sensing. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1943-0655 1943-0647 |
| DOI: | 10.1109/JPHOT.2016.2541861 |