Best practices and tools in R and Python for statistical processing and visualization of lipidomics and metabolomics data

Mass spectrometry-based lipidomics and metabolomics generate extensive data sets that, along with metadata such as clinical parameters, require specific data exploration skills to identify and visualize statistically significant trends and biologically relevant differences. Besides tailored methods...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 8714 - 19
Main Authors: Idkowiak, Jakub, Dehairs, Jonas, Schwarzerová, Jana, Olešová, Dominika, Truong, Jacob X. M., Kvasnička, Aleš, Eftychiou, Marios, Cools, Ruben, Spotbeen, Xander, Jirásko, Robert, Veseli, Vullnet, Giampà, Marco, de Laat, Vincent, Butler, Lisa M., Weckwerth, Wolfram, Friedecký, David, Demeulemeester, Jonas, Hron, Karel, Swinnen, Johannes V., Holčapek, Michal
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.09.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first