End-to-end deep learning for smart maritime threat detection: an AE–CNN–LSTM-based approach

Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 36316 - 26
Hlavní autori: Anuja, R., Annrose, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 17.10.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments.
AbstractList Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments.
Abstract Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments.
Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder-Convolutional Neural Network-Long Short-Term Memory (AE-CNN-LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints-such as dataset realism and class imbalance-to contextualize applicability in operational environments.Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder-Convolutional Neural Network-Long Short-Term Memory (AE-CNN-LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints-such as dataset realism and class imbalance-to contextualize applicability in operational environments.
ArticleNumber 36316
Author Anuja, R.
Annrose, J.
Author_xml – sequence: 1
  givenname: R.
  surname: Anuja
  fullname: Anuja, R.
  email: anuja.cse@rcet.org.in
  organization: Department of Computer Science and Engineering (AI & ML), Rohini College of Engineering and Technology
– sequence: 2
  givenname: J.
  surname: Annrose
  fullname: Annrose, J.
  organization: Information Technology, St. Xaviers Catholic College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41107263$$D View this record in MEDLINE/PubMed
BookMark eNp9kbFuFDEQhi0URMKRF6BAK9HQOHjtsb1LF50OiHSEglBbXu_4sqc9-7D3CjregTfkSXBuk4AocDG2rG9-z-__OTkJMSAhL2t2UTPRvM1Qy7ahjEtatyAZhSfkjDOQlAvOT_46n5LznLesLMlbqNtn5BTqmmmuxBkxq9DTKVIMfdUj7qsRbQpD2FQ-pirvbJqqUoZp2GE13Sa0U-EmdNMQw7vKhupy9evHz-X1danrLzefaGcz9pXd71O07vYFeertmPH8fl-Qr-9XN8uPdP35w9Xyck0diGaiyvWopEQpoFaNAqaZBY5cYWs1gNdaK-tZ0xQP3CNy0UjmO4XOO9E4Lhbkatbto92afRrK0N9NtIM5XsS0McXK4EY0QklknW5brgDQu85JxkGDd70CVG3RejNrFQvfDpgnsxuyw3G0AeMhG8EV15w15QMX5PU_6DYeUihOj5RsgSko1Kt76tDtsH8c7yGGAvAZcCnmnNA_IjUzd3GbOW5T4jbHuM2dqpibcoHDBtOft__T9RvkzqqW
Cites_doi 10.1093/comjnl/bxaf065
10.3390/s24113458
10.3390/s25103043
10.1016/j.knosys.2023.110941
10.1007/s10922-025-09963-8
10.1007/s10207-023-00876-0
10.1016/j.jnca.2015.11.016
10.1007/s10115-025-02041-0
10.1109/ICCBD-AI65562.2024.00030
10.58346/JISIS.2025.I2.057
10.14445/23488549/IJECE-V11I6P109
10.1109/ISNCC62547.2024.10758956
10.3390/s22103744
10.2991/978-94-6463-762-3_17
10.1109/GLOBECOM54140.2023.10437860
10.3390/electronics13020276
10.3390/s22041396
10.33022/IJCS.V13I1.3720
10.1016/j.eswa.2024.123808
10.1109/TCE.2024.3499942
10.30574/wjarr.2024.21.3.0983
10.1038/s41598-025-85248-z
10.1016/j.jnca.2021.103271
10.1109/JBHI.2024.3352013
10.3390/jmse11010221
10.3390/electronics12204289
10.1007/s12083-025-01944-7
10.1016/j.inffus.2023.102002
10.1038/s41598-025-87454-1
10.3390/app15031552
10.1007/978-981-99-7139-2_18
10.3934/nhm.2025024
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-19450-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69
41107263
10_1038_s41598_025_19450_4
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-6cde655e53416864070a42e26e9a744f7776af0880522fee23850fb6ecfc38c23
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597100100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 19:22:52 EST 2025
Sun Oct 19 01:51:39 EDT 2025
Sat Oct 25 03:48:27 EDT 2025
Tue Oct 21 01:43:26 EDT 2025
Sat Nov 29 07:06:06 EST 2025
Sun Oct 19 01:20:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Autoencoder (AE) models
Long short-term memory (LSTM) networks
Convolutional neural networks (CNNs)
Maritime cybersecurity
IoT-based intrusion detection systems
Deep learning techniques
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-6cde655e53416864070a42e26e9a744f7776af0880522fee23850fb6ecfc38c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/365e0b7992644efcbc502474fcd64e69
PMID 41107263
PQID 3262594064
PQPubID 2041939
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69
proquest_miscellaneous_3262720826
proquest_journals_3262594064
pubmed_primary_41107263
crossref_primary_10_1038_s41598_025_19450_4
springer_journals_10_1038_s41598_025_19450_4
PublicationCentury 2000
PublicationDate 2025-10-17
PublicationDateYYYYMMDD 2025-10-17
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References P Gupta (19450_CR34) 2025; 25
X Li (19450_CR44) 2024; 11
G Potamos (19450_CR8) 2024; 24
AF Skarmeta (19450_CR16) 2024; 203
R Lazzarini (19450_CR17) 2023; 279
H Rezaei (19450_CR25) 2025; 33
B Xu (19450_CR3) 2023; 12
EC Nkoro (19450_CR5) 2024; 13
RM Al-Khatib (19450_CR40) 2025; 20
19450_CR31
VG Bitra (19450_CR39) 2024
L Chen (19450_CR18) 2024; 24
D Singh (19450_CR45) 2022; 197
A Deshmukh (19450_CR12) 2025; 25
D Silivery (19450_CR32) 2023; 23
SS Kareem (19450_CR11) 2022; 22
IA Khan (19450_CR30) 2024; 101
19450_CR13
Y Zhang (19450_CR15) 2025; 15
19450_CR35
S Raza (19450_CR6) 2023; 19
19450_CR37
H Nandanwar (19450_CR19) 2024; 249
H Nandanwar (19450_CR22) 2025
AM Amine (19450_CR38) 2024; 11
L Xi (19450_CR33) 2024; 133
Y Zhou (19450_CR2) 2022; 200
IA Khan (19450_CR28) 2024; 28
M Ahmed (19450_CR1) 2020; 60
T Smith (19450_CR7) 2023; 28
N Dash (19450_CR9) 2025; 15
19450_CR42
19450_CR41
H Nandanwar (19450_CR20) 2024; 23
H Nandanwar (19450_CR21) 2025
T Hou (19450_CR4) 2023; 11
FS Alrayes (19450_CR10) 2025; 15
SKR Mallidi (19450_CR14) 2025; 15
19450_CR29
KR Chidambaram (19450_CR36) 2025; 15
19450_CR24
19450_CR23
R Jablaoui (19450_CR27) 2025
E Gyamfi (19450_CR43) 2022; 22
19450_CR26
References_xml – year: 2025
  ident: 19450_CR21
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxaf065
– volume: 24
  start-page: 3458
  issue: 11
  year: 2024
  ident: 19450_CR8
  publication-title: Sensors
  doi: 10.3390/s24113458
– volume: 25
  start-page: 3043
  issue: 10
  year: 2025
  ident: 19450_CR12
  publication-title: Sensors
  doi: 10.3390/s25103043
– volume: 133
  start-page: 103308
  year: 2024
  ident: 19450_CR33
  publication-title: Comput. Secur.
– ident: 19450_CR37
– ident: 19450_CR31
– volume: 279
  start-page: 110941
  year: 2023
  ident: 19450_CR17
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110941
– volume: 33
  start-page: 82
  year: 2025
  ident: 19450_CR25
  publication-title: J. Netw. Syst. Manage.
  doi: 10.1007/s10922-025-09963-8
– volume: 200
  start-page: 321
  year: 2022
  ident: 19450_CR2
  publication-title: Comput. Secur.
– volume: 23
  start-page: 1
  issue: 10
  year: 2023
  ident: 19450_CR32
  publication-title: MDPI Sensors
– volume: 19
  start-page: 155014772311010
  year: 2023
  ident: 19450_CR6
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 23
  start-page: 1251
  issue: 2
  year: 2024
  ident: 19450_CR20
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-023-00876-0
– volume: 203
  start-page: 111023
  year: 2024
  ident: 19450_CR16
  publication-title: Comput. Netw.
– volume: 60
  start-page: 19
  year: 2020
  ident: 19450_CR1
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2015.11.016
– year: 2025
  ident: 19450_CR22
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-025-02041-0
– ident: 19450_CR13
  doi: 10.1109/ICCBD-AI65562.2024.00030
– volume: 15
  start-page: 858
  issue: 2
  year: 2025
  ident: 19450_CR36
  publication-title: J. Int. Serv. Inf. Secur.
  doi: 10.58346/JISIS.2025.I2.057
– volume: 11
  start-page: 107
  issue: 6
  year: 2024
  ident: 19450_CR38
  publication-title: SSRG Int. J. Electron. Commun. Eng.
  doi: 10.14445/23488549/IJECE-V11I6P109
– ident: 19450_CR41
  doi: 10.1109/ISNCC62547.2024.10758956
– volume: 22
  start-page: 3744
  issue: 10
  year: 2022
  ident: 19450_CR43
  publication-title: Sensors
  doi: 10.3390/s22103744
– ident: 19450_CR23
  doi: 10.2991/978-94-6463-762-3_17
– ident: 19450_CR26
  doi: 10.1109/GLOBECOM54140.2023.10437860
– volume: 13
  start-page: 276
  issue: 2
  year: 2024
  ident: 19450_CR5
  publication-title: Electronics
  doi: 10.3390/electronics13020276
– volume: 22
  start-page: 1396
  issue: 7
  year: 2022
  ident: 19450_CR11
  publication-title: Sensors
  doi: 10.3390/s22041396
– ident: 19450_CR35
  doi: 10.33022/IJCS.V13I1.3720
– ident: 19450_CR42
– volume: 249
  start-page: 123808
  year: 2024
  ident: 19450_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123808
– ident: 19450_CR29
  doi: 10.1109/TCE.2024.3499942
– year: 2024
  ident: 19450_CR39
  publication-title: World J. Adv. Res. Rev.
  doi: 10.30574/wjarr.2024.21.3.0983
– volume: 15
  start-page: 1554
  year: 2025
  ident: 19450_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-85248-z
– volume: 197
  start-page: 103271
  year: 2022
  ident: 19450_CR45
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103271
– volume: 28
  start-page: 3228
  issue: 6
  year: 2024
  ident: 19450_CR28
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3352013
– volume: 25
  start-page: 1
  issue: 5
  year: 2025
  ident: 19450_CR34
  publication-title: MDPI Sens.
– volume: 11
  start-page: 221
  issue: 1
  year: 2023
  ident: 19450_CR4
  publication-title: J. Mar. Sci Eng.
  doi: 10.3390/jmse11010221
– volume: 12
  start-page: 4289
  issue: 20
  year: 2023
  ident: 19450_CR3
  publication-title: Electronics
  doi: 10.3390/electronics12204289
– volume: 11
  start-page: 2120
  issue: 3
  year: 2024
  ident: 19450_CR44
  publication-title: IEEE Internet Things J.
– volume: 24
  start-page: 2154
  issue: 5
  year: 2024
  ident: 19450_CR18
  publication-title: Sensors
– year: 2025
  ident: 19450_CR27
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-025-01944-7
– volume: 101
  start-page: 102002
  year: 2024
  ident: 19450_CR30
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102002
– volume: 28
  start-page: 456
  issue: 4
  year: 2023
  ident: 19450_CR7
  publication-title: J. Mar. Sci. Technol.
– volume: 15
  start-page: 3338
  year: 2025
  ident: 19450_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-87454-1
– volume: 15
  start-page: e1478
  issue: 2
  year: 2025
  ident: 19450_CR14
  publication-title: WIREs. Data Min. Knowl. Discov.
– volume: 15
  start-page: 1552
  issue: 3
  year: 2025
  ident: 19450_CR15
  publication-title: Appl. Sci.
  doi: 10.3390/app15031552
– ident: 19450_CR24
  doi: 10.1007/978-981-99-7139-2_18
– volume: 20
  start-page: 532
  issue: 2
  year: 2025
  ident: 19450_CR40
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2025024
SSID ssj0000529419
Score 2.4619267
Snippet Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve...
Abstract Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 36316
SubjectTerms 639/166
639/4077
639/705
Autoencoder (AE) models
Benchmarks
Blockchain
Connectivity
Convolutional neural networks (CNNs)
Datasets
Deep learning
Deep learning techniques
Design
False alarms
Feature selection
Firmware
Humanities and Social Sciences
Internet of Things
IoT-based intrusion detection systems
Long short-term memory
Long short-term memory (LSTM) networks
Maritime cybersecurity
multidisciplinary
Neural networks
Ports
Privacy
Science
Science (multidisciplinary)
Security systems
Sensors
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWggMSFb0poQUbiBla9jmM7XKpSbcWhXVWioN6sxBmXHposmxSJG_-Bf8gvYew4WyE-LlxySKxokjf2e_bYM4S8BN6AqEvHHPIfk5VQzJgqZ7WvUO2KmvuYnf_joV4szOlpeZwW3Pq0rXIaE-NA3XQurJHvoMxApY70I3eXn1moGhWiq6mExnVyA5XNLGzpOhLH6zWWEMWSszKdleG52emRr8KZMlEwnL0XnMlf-Cim7f-T1vwtThrp5-Du_xp-j9xJwpPujZ5yn1yD9gG5NZai_PqQ2HnbsKFj0Da0AVjSVE7ijKKqpf0FehjFy3moRU-HT0FqYrshbuRq39CqpXvzH9--7y8WeD18f3LEAj82dMpZ_oh8OJif7L9jqfgCczI3A1OuAVUUUCDNKRPCfbySAoSCstJSeq21qjyOUfiThQdA6i-4rxU473LjRP6YbLRdC08INVyJZgaCu8pIp1SpPboCuNJzgLpWGXk1QWCXY44NG2PjubEjYBYBsxEwKzPyNqC0bhnyY8cb3erMpu5mc1UAr3VZBr0H3tWuQDGipXeNkqDKjGxPYNnUaXt7hVRGXqwfY3cLMZSqhe5ybKMF6ia0enP0jbUlMsylhcoz8npylquX__2Dnv7bli1yW0R_5Wymt8nGsLqEZ-Sm-zKc96vn0eF_Aka0Btk
  priority: 102
  providerName: ProQuest
Title End-to-end deep learning for smart maritime threat detection: an AE–CNN–LSTM-based approach
URI https://link.springer.com/article/10.1038/s41598-025-19450-4
https://www.ncbi.nlm.nih.gov/pubmed/41107263
https://www.proquest.com/docview/3262594064
https://www.proquest.com/docview/3262720826
https://doaj.org/article/365e0b7992644efcbc502474fcd64e69
Volume 15
WOSCitedRecordID wos001597100100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBYkLKv9Ly8pI3MCq13H8w62ttgKpG0VQ0HKyEmdceiBbdVMkbrxD37BPwtjJLkWAuHCZQ2I59oyd7xuNPUPIC-ANiNp65hH_mKyEYsZUGatDhWxX1Dyk7Pwfj3RRmPncltdKfcUzYX164F5xu5nKgdfa2ojcEHztc4QVLYNvlASVru5xba85U31Wb2HlxA63ZHhmdpeIVPE2mcgZ-u05Z_IXJEoJ-__EMn-LkCbgOdwidwfGSPf6kd4jN6C9T273NSS_PSBu2jasWzBoG9oAnNGhDsQJRTpKl19whhTFaSwiT7vPkSNiuy6dwGpf06qle9Or75cHRYHy6P3xjEVga-gq2fhD8uFwenzwhg1VE5iXmemY8g2oPIcc8UmZGKfjlRQgFNhKSxm01qoK-HNBHYkAgJid81Ar8MFnxovsEdloFy08IdRwJZoJCO4rI71SVge0IXgbOEBdqxF5udKgO-uTY7gU1M6M6_XtUN8u6dvJEdmPSl63jImt0wM0txvM7f5l7hHZWZnIDbtt6ZCCoheH1AS_8Xz9GvdJDH5ULSwu-jZaIOHBUT_uTbseiYxOsFDZiLxa2fpn53-f0NP_MaFtckekRcnZRO-Qje78Ap6RW_5rd7o8H5Obeq6TNGOyuT8tynfjtNJRzkQZpUa5Wb6dlZ9-ACiX_5o
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqAoIN70eggJFgBVY9juM4SAiVMlWrTqNKDKg7N3GuyyyaDJMU1B3_wH_wUXwJ13lMhXjsumCTRWJFdnzuPSe-9r2EPAVegMgTyyzyH5OZUEzrLGS5y1Dtipy7Njv_h0mcpvrgINlfId-HszB-W-XgE1tHXVTWr5Gvo8xApY70I1_PPzFfNcpHV4cSGh0sduH0C_6y1a923uL8PhNiazzd3GZ9VQFmZagbpmwBKoogQv-ttI9j8UwKEAqSLJbSxXGsMofGx1GaOADktIi7XIF1NtTWJzpAl39B-sxifqug2F-u6fiomRwl_dkcHur1GvnRn2ETERslMuJM_sJ_bZmAP2nb3-KyLd1tXfvfPtR1crUX1nSjs4QbZAXKm-RSV2rz9BYx47JgTcWgLGgBMKd9uYwjiqqd1sdoQRQvs2Z2DLT56KU0tmvajWrlS5qVdGP84-u3zTTF6-TddI95_i_okJP9Nnl_LqO7Q1bLqoR7hGquRDECwW2mpVUqiR1CHWziOECeq4A8H6bczLscIqaN_YfadAAxCBDTAsTIgLzxqFi29Pm_2xvV4sj07sSEKgKex0ni9Sw4m9sIxVYsnS2UBJUEZG0Ah-mdUm3OkBGQJ8vH6E58jCgroTrp2sQCdSH2-m6HxWVPpF8rECoMyIsBnGcv__uA7v-7L4_J5e3p3sRMdtLdB-SKaG2Fs1G8RlabxQk8JBft52ZWLx61xkbJ4XmD9ic2mGIC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvB-BAosEJ1hls16vbSSESpuIqmkUiYLa02KvZ0sOdULignrjP_Bv-Dn8Emb9SIV43Hrgsgd7Ze3jm5nPO7MzAE9Q5CizxHJL9o-rVGoex2nAM5cS25WZcFV2_vejaDyODw6SyRp8b-_C-LDKVidWijqfWX9G3iOaQUydzI_quSYsYrI9fDX_xH0FKe9pbctp1BDZxdMv9Pu2fLmzTXv9VMrhYH_rDW8qDHCrgrjk2uaowxBD0uU69j4tkSqJUmOSRkq5KIp06kgQBdEUh0j2LRQu02idDWLrkx6Q-l8nSq5kB9YnO3uTw9UJj_ehqX7S3NQRQdxbkrX0N9pkyPuJCgVXv1jDqmjAn5jub17ayvgNr_7Py3YNrjSUm23WMnId1rC4ARfrIpynN8EMipyXM45FznLEOWsKaRwx4vNseUyyxaiZltNjZOVHT7KpX1mFsBUvWFqwzcGPr9-2xmNqR2_397hnBjlrs7XfgnfnMrvb0ClmBd4FFgst8z5KYdNYWa2TyJEQoE2cQMwy3YVn7fabeZ1dxFRRAUFsarAYAoupwGJUF157hKx6-szg1YPZ4sg0isYEOkSRRUnimS46m9mQaFiknM21Qp10YaMFimnU1dKcoaQLj1evSdF471Fa4Oyk7hNJYow06js1LlcjUf4UQeqgC89boJ59_O8TuvfvsTyCS4RVM9oZ796Hy7ISG8H70QZ0ysUJPoAL9nM5XS4eNpLH4MN5o_YnuK5sSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+deep+learning+for+smart+maritime+threat+detection%3A+an+AE%E2%80%93CNN%E2%80%93LSTM-based+approach&rft.jtitle=Scientific+reports&rft.au=R.+Anuja&rft.au=J.+Annrose&rft.date=2025-10-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1038%2Fs41598-025-19450-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon