End-to-end deep learning for smart maritime threat detection: an AE–CNN–LSTM-based approach
Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 36316 - 26 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
17.10.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments. |
|---|---|
| AbstractList | Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments. Abstract Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder–Convolutional Neural Network–Long Short-Term Memory (AE–CNN–LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints—such as dataset realism and class imbalance-to contextualize applicability in operational environments. Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder-Convolutional Neural Network-Long Short-Term Memory (AE-CNN-LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints-such as dataset realism and class imbalance-to contextualize applicability in operational environments.Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve detection fidelity under these conditions, we present a hybrid Autoencoder-Convolutional Neural Network-Long Short-Term Memory (AE-CNN-LSTM) based framework that unifies unsupervised reconstruction signals with spatio-temporal feature learning for intrusion detection in marine cyber-physical networks. The model is trained and evaluated on a KDDCup99-based benchmark adapted to simulated maritime scenarios and supports both binary and multiclass classification. In the binary setting, the system attains 99.8% accuracy; in the multiclass setting it demonstrates consistently strong performance across precision, recall, F1-score, and AUC, with minority-class behavior analyzed via confusion matrices and threshold sensitivity. Reconstruction errors (MAE/MSE) provide an auxiliary anomaly cue that aids triage. In this study the results are compared with representative deep-learning and transformer baselines, the proposed model yields competitive to superior results while remaining suitable for real-time deployment in smart ports, autonomous vessels, and underwater sensor networks. We also discuss practical constraints-such as dataset realism and class imbalance-to contextualize applicability in operational environments. |
| ArticleNumber | 36316 |
| Author | Anuja, R. Annrose, J. |
| Author_xml | – sequence: 1 givenname: R. surname: Anuja fullname: Anuja, R. email: anuja.cse@rcet.org.in organization: Department of Computer Science and Engineering (AI & ML), Rohini College of Engineering and Technology – sequence: 2 givenname: J. surname: Annrose fullname: Annrose, J. organization: Information Technology, St. Xaviers Catholic College of Engineering |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41107263$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kbFuFDEQhi0URMKRF6BAK9HQOHjtsb1LF50OiHSEglBbXu_4sqc9-7D3CjregTfkSXBuk4AocDG2rG9-z-__OTkJMSAhL2t2UTPRvM1Qy7ahjEtatyAZhSfkjDOQlAvOT_46n5LznLesLMlbqNtn5BTqmmmuxBkxq9DTKVIMfdUj7qsRbQpD2FQ-pirvbJqqUoZp2GE13Sa0U-EmdNMQw7vKhupy9evHz-X1danrLzefaGcz9pXd71O07vYFeertmPH8fl-Qr-9XN8uPdP35w9Xyck0diGaiyvWopEQpoFaNAqaZBY5cYWs1gNdaK-tZ0xQP3CNy0UjmO4XOO9E4Lhbkatbto92afRrK0N9NtIM5XsS0McXK4EY0QklknW5brgDQu85JxkGDd70CVG3RejNrFQvfDpgnsxuyw3G0AeMhG8EV15w15QMX5PU_6DYeUihOj5RsgSko1Kt76tDtsH8c7yGGAvAZcCnmnNA_IjUzd3GbOW5T4jbHuM2dqpibcoHDBtOft__T9RvkzqqW |
| Cites_doi | 10.1093/comjnl/bxaf065 10.3390/s24113458 10.3390/s25103043 10.1016/j.knosys.2023.110941 10.1007/s10922-025-09963-8 10.1007/s10207-023-00876-0 10.1016/j.jnca.2015.11.016 10.1007/s10115-025-02041-0 10.1109/ICCBD-AI65562.2024.00030 10.58346/JISIS.2025.I2.057 10.14445/23488549/IJECE-V11I6P109 10.1109/ISNCC62547.2024.10758956 10.3390/s22103744 10.2991/978-94-6463-762-3_17 10.1109/GLOBECOM54140.2023.10437860 10.3390/electronics13020276 10.3390/s22041396 10.33022/IJCS.V13I1.3720 10.1016/j.eswa.2024.123808 10.1109/TCE.2024.3499942 10.30574/wjarr.2024.21.3.0983 10.1038/s41598-025-85248-z 10.1016/j.jnca.2021.103271 10.1109/JBHI.2024.3352013 10.3390/jmse11010221 10.3390/electronics12204289 10.1007/s12083-025-01944-7 10.1016/j.inffus.2023.102002 10.1038/s41598-025-87454-1 10.3390/app15031552 10.1007/978-981-99-7139-2_18 10.3934/nhm.2025024 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-19450-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69 41107263 10_1038_s41598_025_19450_4 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-6cde655e53416864070a42e26e9a744f7776af0880522fee23850fb6ecfc38c23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001597100100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 19:22:52 EST 2025 Sun Oct 19 01:51:39 EDT 2025 Sat Oct 25 03:48:27 EDT 2025 Tue Oct 21 01:43:26 EDT 2025 Sat Nov 29 07:06:06 EST 2025 Sun Oct 19 01:20:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Autoencoder (AE) models Long short-term memory (LSTM) networks Convolutional neural networks (CNNs) Maritime cybersecurity IoT-based intrusion detection systems Deep learning techniques |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-6cde655e53416864070a42e26e9a744f7776af0880522fee23850fb6ecfc38c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/365e0b7992644efcbc502474fcd64e69 |
| PMID | 41107263 |
| PQID | 3262594064 |
| PQPubID | 2041939 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69 proquest_miscellaneous_3262720826 proquest_journals_3262594064 pubmed_primary_41107263 crossref_primary_10_1038_s41598_025_19450_4 springer_journals_10_1038_s41598_025_19450_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-17 |
| PublicationDateYYYYMMDD | 2025-10-17 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | P Gupta (19450_CR34) 2025; 25 X Li (19450_CR44) 2024; 11 G Potamos (19450_CR8) 2024; 24 AF Skarmeta (19450_CR16) 2024; 203 R Lazzarini (19450_CR17) 2023; 279 H Rezaei (19450_CR25) 2025; 33 B Xu (19450_CR3) 2023; 12 EC Nkoro (19450_CR5) 2024; 13 RM Al-Khatib (19450_CR40) 2025; 20 19450_CR31 VG Bitra (19450_CR39) 2024 L Chen (19450_CR18) 2024; 24 D Singh (19450_CR45) 2022; 197 A Deshmukh (19450_CR12) 2025; 25 D Silivery (19450_CR32) 2023; 23 SS Kareem (19450_CR11) 2022; 22 IA Khan (19450_CR30) 2024; 101 19450_CR13 Y Zhang (19450_CR15) 2025; 15 19450_CR35 S Raza (19450_CR6) 2023; 19 19450_CR37 H Nandanwar (19450_CR19) 2024; 249 H Nandanwar (19450_CR22) 2025 AM Amine (19450_CR38) 2024; 11 L Xi (19450_CR33) 2024; 133 Y Zhou (19450_CR2) 2022; 200 IA Khan (19450_CR28) 2024; 28 M Ahmed (19450_CR1) 2020; 60 T Smith (19450_CR7) 2023; 28 N Dash (19450_CR9) 2025; 15 19450_CR42 19450_CR41 H Nandanwar (19450_CR20) 2024; 23 H Nandanwar (19450_CR21) 2025 T Hou (19450_CR4) 2023; 11 FS Alrayes (19450_CR10) 2025; 15 SKR Mallidi (19450_CR14) 2025; 15 19450_CR29 KR Chidambaram (19450_CR36) 2025; 15 19450_CR24 19450_CR23 R Jablaoui (19450_CR27) 2025 E Gyamfi (19450_CR43) 2022; 22 19450_CR26 |
| References_xml | – year: 2025 ident: 19450_CR21 publication-title: Comput. J. doi: 10.1093/comjnl/bxaf065 – volume: 24 start-page: 3458 issue: 11 year: 2024 ident: 19450_CR8 publication-title: Sensors doi: 10.3390/s24113458 – volume: 25 start-page: 3043 issue: 10 year: 2025 ident: 19450_CR12 publication-title: Sensors doi: 10.3390/s25103043 – volume: 133 start-page: 103308 year: 2024 ident: 19450_CR33 publication-title: Comput. Secur. – ident: 19450_CR37 – ident: 19450_CR31 – volume: 279 start-page: 110941 year: 2023 ident: 19450_CR17 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110941 – volume: 33 start-page: 82 year: 2025 ident: 19450_CR25 publication-title: J. Netw. Syst. Manage. doi: 10.1007/s10922-025-09963-8 – volume: 200 start-page: 321 year: 2022 ident: 19450_CR2 publication-title: Comput. Secur. – volume: 23 start-page: 1 issue: 10 year: 2023 ident: 19450_CR32 publication-title: MDPI Sensors – volume: 19 start-page: 155014772311010 year: 2023 ident: 19450_CR6 publication-title: Int. J. Distrib. Sens. Netw. – volume: 23 start-page: 1251 issue: 2 year: 2024 ident: 19450_CR20 publication-title: Int. J. Inf. Secur. doi: 10.1007/s10207-023-00876-0 – volume: 203 start-page: 111023 year: 2024 ident: 19450_CR16 publication-title: Comput. Netw. – volume: 60 start-page: 19 year: 2020 ident: 19450_CR1 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2015.11.016 – year: 2025 ident: 19450_CR22 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-025-02041-0 – ident: 19450_CR13 doi: 10.1109/ICCBD-AI65562.2024.00030 – volume: 15 start-page: 858 issue: 2 year: 2025 ident: 19450_CR36 publication-title: J. Int. Serv. Inf. Secur. doi: 10.58346/JISIS.2025.I2.057 – volume: 11 start-page: 107 issue: 6 year: 2024 ident: 19450_CR38 publication-title: SSRG Int. J. Electron. Commun. Eng. doi: 10.14445/23488549/IJECE-V11I6P109 – ident: 19450_CR41 doi: 10.1109/ISNCC62547.2024.10758956 – volume: 22 start-page: 3744 issue: 10 year: 2022 ident: 19450_CR43 publication-title: Sensors doi: 10.3390/s22103744 – ident: 19450_CR23 doi: 10.2991/978-94-6463-762-3_17 – ident: 19450_CR26 doi: 10.1109/GLOBECOM54140.2023.10437860 – volume: 13 start-page: 276 issue: 2 year: 2024 ident: 19450_CR5 publication-title: Electronics doi: 10.3390/electronics13020276 – volume: 22 start-page: 1396 issue: 7 year: 2022 ident: 19450_CR11 publication-title: Sensors doi: 10.3390/s22041396 – ident: 19450_CR35 doi: 10.33022/IJCS.V13I1.3720 – ident: 19450_CR42 – volume: 249 start-page: 123808 year: 2024 ident: 19450_CR19 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123808 – ident: 19450_CR29 doi: 10.1109/TCE.2024.3499942 – year: 2024 ident: 19450_CR39 publication-title: World J. Adv. Res. Rev. doi: 10.30574/wjarr.2024.21.3.0983 – volume: 15 start-page: 1554 year: 2025 ident: 19450_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-025-85248-z – volume: 197 start-page: 103271 year: 2022 ident: 19450_CR45 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103271 – volume: 28 start-page: 3228 issue: 6 year: 2024 ident: 19450_CR28 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3352013 – volume: 25 start-page: 1 issue: 5 year: 2025 ident: 19450_CR34 publication-title: MDPI Sens. – volume: 11 start-page: 221 issue: 1 year: 2023 ident: 19450_CR4 publication-title: J. Mar. Sci Eng. doi: 10.3390/jmse11010221 – volume: 12 start-page: 4289 issue: 20 year: 2023 ident: 19450_CR3 publication-title: Electronics doi: 10.3390/electronics12204289 – volume: 11 start-page: 2120 issue: 3 year: 2024 ident: 19450_CR44 publication-title: IEEE Internet Things J. – volume: 24 start-page: 2154 issue: 5 year: 2024 ident: 19450_CR18 publication-title: Sensors – year: 2025 ident: 19450_CR27 publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-025-01944-7 – volume: 101 start-page: 102002 year: 2024 ident: 19450_CR30 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102002 – volume: 28 start-page: 456 issue: 4 year: 2023 ident: 19450_CR7 publication-title: J. Mar. Sci. Technol. – volume: 15 start-page: 3338 year: 2025 ident: 19450_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-025-87454-1 – volume: 15 start-page: e1478 issue: 2 year: 2025 ident: 19450_CR14 publication-title: WIREs. Data Min. Knowl. Discov. – volume: 15 start-page: 1552 issue: 3 year: 2025 ident: 19450_CR15 publication-title: Appl. Sci. doi: 10.3390/app15031552 – ident: 19450_CR24 doi: 10.1007/978-981-99-7139-2_18 – volume: 20 start-page: 532 issue: 2 year: 2025 ident: 19450_CR40 publication-title: Netw. Heterog. Media doi: 10.3934/nhm.2025024 |
| SSID | ssj0000529419 |
| Score | 2.4619267 |
| Snippet | Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To improve... Abstract Smart maritime operations face growing cyber risks due to the proliferation of IoT-enabled sensors, navigation units, and communication links. To... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 36316 |
| SubjectTerms | 639/166 639/4077 639/705 Autoencoder (AE) models Benchmarks Blockchain Connectivity Convolutional neural networks (CNNs) Datasets Deep learning Deep learning techniques Design False alarms Feature selection Firmware Humanities and Social Sciences Internet of Things IoT-based intrusion detection systems Long short-term memory Long short-term memory (LSTM) networks Maritime cybersecurity multidisciplinary Neural networks Ports Privacy Science Science (multidisciplinary) Security systems Sensors |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWggMSFb0poQUbiBla9jmM7XKpSbcWhXVWioN6sxBmXHposmxSJG_-Bf8gvYew4WyE-LlxySKxokjf2e_bYM4S8BN6AqEvHHPIfk5VQzJgqZ7WvUO2KmvuYnf_joV4szOlpeZwW3Pq0rXIaE-NA3XQurJHvoMxApY70I3eXn1moGhWiq6mExnVyA5XNLGzpOhLH6zWWEMWSszKdleG52emRr8KZMlEwnL0XnMlf-Cim7f-T1vwtThrp5-Du_xp-j9xJwpPujZ5yn1yD9gG5NZai_PqQ2HnbsKFj0Da0AVjSVE7ijKKqpf0FehjFy3moRU-HT0FqYrshbuRq39CqpXvzH9--7y8WeD18f3LEAj82dMpZ_oh8OJif7L9jqfgCczI3A1OuAVUUUCDNKRPCfbySAoSCstJSeq21qjyOUfiThQdA6i-4rxU473LjRP6YbLRdC08INVyJZgaCu8pIp1SpPboCuNJzgLpWGXk1QWCXY44NG2PjubEjYBYBsxEwKzPyNqC0bhnyY8cb3erMpu5mc1UAr3VZBr0H3tWuQDGipXeNkqDKjGxPYNnUaXt7hVRGXqwfY3cLMZSqhe5ybKMF6ia0enP0jbUlMsylhcoz8npylquX__2Dnv7bli1yW0R_5Wymt8nGsLqEZ-Sm-zKc96vn0eF_Aka0Btk priority: 102 providerName: ProQuest |
| Title | End-to-end deep learning for smart maritime threat detection: an AE–CNN–LSTM-based approach |
| URI | https://link.springer.com/article/10.1038/s41598-025-19450-4 https://www.ncbi.nlm.nih.gov/pubmed/41107263 https://www.proquest.com/docview/3262594064 https://www.proquest.com/docview/3262720826 https://doaj.org/article/365e0b7992644efcbc502474fcd64e69 |
| Volume | 15 |
| WOSCitedRecordID | wos001597100100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagBYkLKv9Ly8pI3MCq13H8w62ttgKpG0VQ0HKyEmdceiBbdVMkbrxD37BPwtjJLkWAuHCZQ2I59oyd7xuNPUPIC-ANiNp65hH_mKyEYsZUGatDhWxX1Dyk7Pwfj3RRmPncltdKfcUzYX164F5xu5nKgdfa2ojcEHztc4QVLYNvlASVru5xba85U31Wb2HlxA63ZHhmdpeIVPE2mcgZ-u05Z_IXJEoJ-__EMn-LkCbgOdwidwfGSPf6kd4jN6C9T273NSS_PSBu2jasWzBoG9oAnNGhDsQJRTpKl19whhTFaSwiT7vPkSNiuy6dwGpf06qle9Or75cHRYHy6P3xjEVga-gq2fhD8uFwenzwhg1VE5iXmemY8g2oPIcc8UmZGKfjlRQgFNhKSxm01qoK-HNBHYkAgJid81Ar8MFnxovsEdloFy08IdRwJZoJCO4rI71SVge0IXgbOEBdqxF5udKgO-uTY7gU1M6M6_XtUN8u6dvJEdmPSl63jImt0wM0txvM7f5l7hHZWZnIDbtt6ZCCoheH1AS_8Xz9GvdJDH5ULSwu-jZaIOHBUT_uTbseiYxOsFDZiLxa2fpn53-f0NP_MaFtckekRcnZRO-Qje78Ap6RW_5rd7o8H5Obeq6TNGOyuT8tynfjtNJRzkQZpUa5Wb6dlZ9-ACiX_5o |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqAoIN70eggJFgBVY9juM4SAiVMlWrTqNKDKg7N3GuyyyaDJMU1B3_wH_wUXwJ13lMhXjsumCTRWJFdnzuPSe-9r2EPAVegMgTyyzyH5OZUEzrLGS5y1Dtipy7Njv_h0mcpvrgINlfId-HszB-W-XgE1tHXVTWr5Gvo8xApY70I1_PPzFfNcpHV4cSGh0sduH0C_6y1a923uL8PhNiazzd3GZ9VQFmZagbpmwBKoogQv-ttI9j8UwKEAqSLJbSxXGsMofGx1GaOADktIi7XIF1NtTWJzpAl39B-sxifqug2F-u6fiomRwl_dkcHur1GvnRn2ETERslMuJM_sJ_bZmAP2nb3-KyLd1tXfvfPtR1crUX1nSjs4QbZAXKm-RSV2rz9BYx47JgTcWgLGgBMKd9uYwjiqqd1sdoQRQvs2Z2DLT56KU0tmvajWrlS5qVdGP84-u3zTTF6-TddI95_i_okJP9Nnl_LqO7Q1bLqoR7hGquRDECwW2mpVUqiR1CHWziOECeq4A8H6bczLscIqaN_YfadAAxCBDTAsTIgLzxqFi29Pm_2xvV4sj07sSEKgKex0ni9Sw4m9sIxVYsnS2UBJUEZG0Ah-mdUm3OkBGQJ8vH6E58jCgroTrp2sQCdSH2-m6HxWVPpF8rECoMyIsBnGcv__uA7v-7L4_J5e3p3sRMdtLdB-SKaG2Fs1G8RlabxQk8JBft52ZWLx61xkbJ4XmD9ic2mGIC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvB-BAosEJ1hls16vbSSESpuIqmkUiYLa02KvZ0sOdULignrjP_Bv-Dn8Emb9SIV43Hrgsgd7Ze3jm5nPO7MzAE9Q5CizxHJL9o-rVGoex2nAM5cS25WZcFV2_vejaDyODw6SyRp8b-_C-LDKVidWijqfWX9G3iOaQUydzI_quSYsYrI9fDX_xH0FKe9pbctp1BDZxdMv9Pu2fLmzTXv9VMrhYH_rDW8qDHCrgrjk2uaowxBD0uU69j4tkSqJUmOSRkq5KIp06kgQBdEUh0j2LRQu02idDWLrkx6Q-l8nSq5kB9YnO3uTw9UJj_ehqX7S3NQRQdxbkrX0N9pkyPuJCgVXv1jDqmjAn5jub17ayvgNr_7Py3YNrjSUm23WMnId1rC4ARfrIpynN8EMipyXM45FznLEOWsKaRwx4vNseUyyxaiZltNjZOVHT7KpX1mFsBUvWFqwzcGPr9-2xmNqR2_397hnBjlrs7XfgnfnMrvb0ClmBd4FFgst8z5KYdNYWa2TyJEQoE2cQMwy3YVn7fabeZ1dxFRRAUFsarAYAoupwGJUF157hKx6-szg1YPZ4sg0isYEOkSRRUnimS46m9mQaFiknM21Qp10YaMFimnU1dKcoaQLj1evSdF471Fa4Oyk7hNJYow06js1LlcjUf4UQeqgC89boJ59_O8TuvfvsTyCS4RVM9oZ796Hy7ISG8H70QZ0ysUJPoAL9nM5XS4eNpLH4MN5o_YnuK5sSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+deep+learning+for+smart+maritime+threat+detection%3A+an+AE%E2%80%93CNN%E2%80%93LSTM-based+approach&rft.jtitle=Scientific+reports&rft.au=R.+Anuja&rft.au=J.+Annrose&rft.date=2025-10-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1038%2Fs41598-025-19450-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_365e0b7992644efcbc502474fcd64e69 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |