Parallel and distributed chimp-optimized LSTM for oil well-log reconstruction in China
Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimizati...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 25950 - 21 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
17.07.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA’s primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources. |
|---|---|
| AbstractList | Abstract Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA’s primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources. Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA’s primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources. Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA's primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources.Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA's primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources. |
| ArticleNumber | 25950 |
| Author | Wang, Zisong Wang, Wenxiang Xia, Lu Ding, Xiujian Cheng, Zhiliang |
| Author_xml | – sequence: 1 givenname: Zisong surname: Wang fullname: Wang, Zisong email: wangzisong0033@gmail.com organization: School of Civil Engineering and Transportation, Weifang University – sequence: 2 givenname: Zhiliang surname: Cheng fullname: Cheng, Zhiliang organization: School of Civil Engineering and Transportation, Weifang University – sequence: 3 givenname: Wenxiang surname: Wang fullname: Wang, Wenxiang organization: School of Civil Engineering and Transportation, Weifang University – sequence: 4 givenname: Xiujian surname: Ding fullname: Ding, Xiujian organization: China University of Petroleum (East China) Geological College – sequence: 5 givenname: Lu surname: Xia fullname: Xia, Lu organization: School of Petroleum Engineering, Shandong University of Petrochemical Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40676071$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vFSEUhompsbX2D7gwJG7coMAww7A0N1WbXKOJ1S3h85YbBq4wE2N_ffFOrcaFbDjn5DkvnPM-BScpJwfAc4JfE9yNbyojvRgRpj0iBHOOxCNwRjHrEe0oPfkrPgUXte5xOz0VjIgn4JThgQ-YkzPw7bMqKkYXoUoW2lDnEvQyOwvNTZgOKB_mMIXblm-_XH-EPheYQ4Q_XIwo5h0szuTUmhYzh5xgSHBzE5J6Bh57Fau7uL_Pwdd3l9ebD2j76f3V5u0WGdaNMxrwSHqtGPeKsxbrNprG1mHNyUBakfuBWM3UiL2wVgtrMPPKeIL7kSrenYOrVddmtZeHEiZVfsqsgjwWctlJVeZgopMjUWoU1LsmxriywvbEsb43um2qJU3r1ap1KPn74uosp1BNG1Qll5cqO9oROgyCk4a-_Afd56WkNumRwgIzTBv14p5a9OTsw_d-b78BdAVMybUW5x8QguUvl-Xqsmwuy6PLUrSmbm2qDU47V_68_Z-uO0Trp58 |
| Cites_doi | 10.2118/198909-PA 10.1038/s41598-024-60228-x 10.2118/221375-MS 10.1109/TGRS.2024.3452937 10.12928/telkomnika.v14i4.3956 10.1109/ACCESS.2023.3336623 10.1109/ITC-Egypt61547.2024.10620581 10.1038/s41598-024-78569-y 10.1016/j.jappgeo.2022.104697 10.1063/5.0222401 10.1021/acs.energyfuels.3c04160 10.1002/ese3.1799 10.2118/205480-PA 10.1109/TSMC.2024.3375812 10.3390/rs15225294 10.1038/s41598-024-80132-8 10.1016/j.petrol.2019.106681 10.1038/s41598-025-95709-0 10.1021/acs.energyfuels.4c02870 10.1016/j.bspc.2021.102764 10.1016/j.aei.2022.101636 10.1002/nag.3467 10.1016/j.heliyon.2023.e19431 10.1016/j.ijmecsci.2024.109838 10.1016/j.ijhydene.2023.08.331 10.1016/j.neucom.2023.126316 10.1049/cth2.12538 10.1016/j.petrol.2019.106332 10.1016/j.ymssp.2022.110022 10.1115/1.4056332 10.3389/feart.2023.1136397 10.1007/s10462-022-10343-w 10.55011/STAIQC.2021.1104 10.1016/j.fuel.2024.133185 10.1038/s41598-024-55473-z 10.1007/s10489-022-04298-2 10.1007/s13202-023-01617-2 10.1063/5.0179422 10.1016/j.asoc.2022.109869 10.1007/978-3-642-04898-2_616 10.2478/jaiscr-2024-0018 10.1016/j.eswa.2020.113338 10.1007/s11042-023-15411-z 10.1109/DRBSD-549595.2019.00012 10.1038/s41598-024-80849-6 10.1016/j.conbuildmat.2024.137874 10.2118/216308-MS 10.1109/ACCESS.2023.3349216 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-11077-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Geology |
| EISSN | 2045-2322 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_81aa892fea8047ad9d51e455cb2049d5 40676071 10_1038_s41598_025_11077_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB NPM 3V. 7XB 88A 8FK COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c438t-60815ba47fa74081b103b0de0b7161fa77f61db4a80f9ddb9dc04facf10582a73 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531692900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:05:01 EDT 2025 Fri Sep 05 15:38:41 EDT 2025 Tue Oct 07 07:56:38 EDT 2025 Thu Jul 24 02:09:10 EDT 2025 Sat Nov 29 07:33:43 EST 2025 Fri Jul 18 01:10:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Long short-term memory Parallel computing Chimp optimization algorithm Oil and gas extraction Well log analysis |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-60815ba47fa74081b103b0de0b7161fa77f61db4a80f9ddb9dc04facf10582a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3231090402?pq-origsite=%requestingapplication% |
| PMID | 40676071 |
| PQID | 3231090402 |
| PQPubID | 2041939 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_81aa892fea8047ad9d51e455cb2049d5 proquest_miscellaneous_3231266971 proquest_journals_3231090402 pubmed_primary_40676071 crossref_primary_10_1038_s41598_025_11077_9 springer_journals_10_1038_s41598_025_11077_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-17 |
| PublicationDateYYYYMMDD | 2025-07-17 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | L Liu (11077_CR30) 2022; 53 A Mohammadzadeh (11077_CR18) 2024; 18 A Al-Fakih (11077_CR8) 2025; 15 11077_CR38 H Yu (11077_CR49) 2023; 145 11077_CR36 11077_CR35 M Yu (11077_CR24) 2024; 14 A Mohammadzadeh (11077_CR17) 2023; 547 11077_CR42 G Zhao (11077_CR22) 2024; 60 T Muthusamy (11077_CR44) 2024; 14 J Yang (11077_CR45) 2023; 15 C Hegde (11077_CR33) 2020; 186 11077_CR48 11077_CR47 DM Marum (11077_CR14) 2020; 35 11077_CR6 Z Zhang (11077_CR27) 2024; 11 LFFM Barbosa (11077_CR39) 2019; 183 11077_CR10 11077_CR4 M Wang (11077_CR11) 2024; 14 L Zhang (11077_CR12) 2023; 38 Y Bouteraa (11077_CR41) 2024; 14 T Liu (11077_CR1) 2024; 445 H Runsheng (11077_CR7) 2023; 11 SR Yan (11077_CR19) 2023; 53 A Al-Fakih (11077_CR3) 2023; 13 11077_CR16 B Gan (11077_CR9) 2025; 380 I Kumar (11077_CR46) 2022; 203 A Garavand (11077_CR37) 2023; 47 M Khishe (11077_CR40) 2023; 56 11077_CR21 11077_CR20 D Rey (11077_CR50) 2011 X Guo (11077_CR43) 2024; 14 L Chang (11077_CR23) 2024; 50 MZA Pon (11077_CR52) 2021; 1 11077_CR26 11077_CR25 A Al-Fakih (11077_CR2) 2023; 11 11077_CR28 Q Bo (11077_CR29) 2023; 132 L Zhang (11077_CR13) 2024; 38 I Syarif (11077_CR51) 2016; 14 M Shi (11077_CR5) 2023; 188 11077_CR32 11077_CR31 TA Olukoga (11077_CR34) 2021; 36 R Han (11077_CR15) 2024; 14 |
| References_xml | – volume: 35 start-page: 1 issue: 01 year: 2020 ident: 11077_CR14 publication-title: SPE Drill. Complet doi: 10.2118/198909-PA – volume: 14 start-page: 9300 issue: 1 year: 2024 ident: 11077_CR11 publication-title: Sci. Rep. doi: 10.1038/s41598-024-60228-x – ident: 11077_CR31 doi: 10.2118/221375-MS – ident: 11077_CR20 doi: 10.1109/TGRS.2024.3452937 – volume: 11 start-page: 143 issue: 5 year: 2024 ident: 11077_CR27 publication-title: J. Comput. Des. Eng. – volume: 14 start-page: 1502 issue: 4 year: 2016 ident: 11077_CR51 publication-title: TELKOMNIKA (Telecommunication Comput. Electron. Control doi: 10.12928/telkomnika.v14i4.3956 – volume: 11 start-page: 140148 year: 2023 ident: 11077_CR2 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3336623 – ident: 11077_CR35 doi: 10.1109/ITC-Egypt61547.2024.10620581 – ident: 11077_CR48 – volume: 14 start-page: 27341 issue: 1 year: 2024 ident: 11077_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-024-78569-y – volume: 203 start-page: 104697 year: 2022 ident: 11077_CR46 publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104697 – ident: 11077_CR4 doi: 10.1063/5.0222401 – volume: 38 start-page: 1192 issue: 2 year: 2023 ident: 11077_CR12 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c04160 – ident: 11077_CR10 doi: 10.1002/ese3.1799 – volume: 36 start-page: 849 issue: 04 year: 2021 ident: 11077_CR34 publication-title: SPE Drill. Complet doi: 10.2118/205480-PA – ident: 11077_CR16 doi: 10.1109/TSMC.2024.3375812 – volume: 15 start-page: 5294 issue: 22 year: 2023 ident: 11077_CR45 publication-title: Remote Sens. doi: 10.3390/rs15225294 – volume: 14 start-page: 28428 issue: 1 year: 2024 ident: 11077_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-024-80132-8 – volume: 186 start-page: 106681 year: 2020 ident: 11077_CR33 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106681 – volume: 15 start-page: 11000 issue: 1 year: 2025 ident: 11077_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-025-95709-0 – volume: 38 start-page: 16371 issue: 17 year: 2024 ident: 11077_CR13 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.4c02870 – ident: 11077_CR25 doi: 10.1016/j.bspc.2021.102764 – volume: 53 start-page: 101636 year: 2022 ident: 11077_CR30 publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101636 – volume: 47 start-page: 241 issue: 2 year: 2023 ident: 11077_CR37 publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.3467 – ident: 11077_CR21 doi: 10.1016/j.heliyon.2023.e19431 – ident: 11077_CR6 doi: 10.1016/j.ijmecsci.2024.109838 – volume: 50 start-page: 592 year: 2024 ident: 11077_CR23 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.331 – volume: 547 start-page: 126316 year: 2023 ident: 11077_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126316 – volume: 18 start-page: 40 issue: 1 year: 2024 ident: 11077_CR18 publication-title: IET Control Theory Appl. doi: 10.1049/cth2.12538 – volume: 183 start-page: 106332 year: 2019 ident: 11077_CR39 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106332 – volume: 188 start-page: 110022 year: 2023 ident: 11077_CR5 publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2022.110022 – volume: 145 start-page: 52902 issue: 5 year: 2023 ident: 11077_CR49 publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4056332 – volume: 11 start-page: 1136397 year: 2023 ident: 11077_CR7 publication-title: Front. Earth Sci. doi: 10.3389/feart.2023.1136397 – volume: 56 start-page: 7633 issue: 8 year: 2023 ident: 11077_CR40 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10343-w – ident: 11077_CR42 – volume: 1 start-page: 36 issue: 1 year: 2021 ident: 11077_CR52 publication-title: Sparklinglight Trans. Artif. Intell. Quantum Comput. doi: 10.55011/STAIQC.2021.1104 – volume: 380 start-page: 133185 year: 2025 ident: 11077_CR9 publication-title: Fuel doi: 10.1016/j.fuel.2024.133185 – volume: 14 start-page: 4591 issue: 1 year: 2024 ident: 11077_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-024-55473-z – volume: 53 start-page: 15638 issue: 12 year: 2023 ident: 11077_CR19 publication-title: Appl. Intell. doi: 10.1007/s10489-022-04298-2 – volume: 13 start-page: 1453 issue: 6 year: 2023 ident: 11077_CR3 publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-023-01617-2 – volume: 60 start-page: 101897 year: 2024 ident: 11077_CR22 publication-title: Eng. Sci. Technol. Int. J. – ident: 11077_CR47 doi: 10.1063/5.0179422 – volume: 132 start-page: 109869 year: 2023 ident: 11077_CR29 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109869 – start-page: 1658 volume-title: International Encyclopedia of Statistical Science year: 2011 ident: 11077_CR50 doi: 10.1007/978-3-642-04898-2_616 – volume: 14 start-page: 321 issue: 4 year: 2024 ident: 11077_CR24 publication-title: J. Artif. Intell. Soft Comput. Res. doi: 10.2478/jaiscr-2024-0018 – ident: 11077_CR28 doi: 10.1016/j.eswa.2020.113338 – ident: 11077_CR26 doi: 10.1007/s11042-023-15411-z – ident: 11077_CR38 doi: 10.1109/DRBSD-549595.2019.00012 – volume: 14 start-page: 29261 issue: 1 year: 2024 ident: 11077_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-024-80849-6 – volume: 445 start-page: 137874 year: 2024 ident: 11077_CR1 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.137874 – ident: 11077_CR36 doi: 10.2118/216308-MS – ident: 11077_CR32 doi: 10.1109/ACCESS.2023.3349216 |
| SSID | ssj0000529419 |
| Score | 2.4547284 |
| Snippet | Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This... Abstract Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 25950 |
| SubjectTerms | 639/166 639/4077 Chimp optimization algorithm Computers Datasets Distributed processing Drilling Efficiency Geology Humanities and Social Sciences Long short-term memory Machine learning Missing data multidisciplinary Neural networks Oil and gas extraction Optimization algorithms Parallel computing Real time Science Science (multidisciplinary) Well log analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SFNyIb0erRHCnoZlJMkmWKhYXWgpW6S6cvHCgnVt6q6C_3pNk7rWi4sbdPEJIvpPkfGcy-Q4hz8AG6MOQcfBmzmSEkZlReTZmMEEY2ecca7IJfXBgjo_t4aVUX-WfsCYP3IDbMz2AsUNOYLjUEG1UfZJKBT8guY1VvZRreymYaqreg5W9XU7JcGH21uipymmyQbES8mhmf_FEVbD_Tyzztx3S6nj2b5IbC2OkL1tLb5Erab5NrrUckt_ukE-HcF7yoZxQmCONRQe3pLBKkYbP0-kZW-GacDp9x_t3H47eU-SodDWd0PLNjmENtEbEWxVZOs20ptS-Sz7uvzl6_ZYtyRJYkMJcsBF9u_IgdQYt8dpjrz2PiXuMiHp8qPPYRy8Rxmxj9DYGLjOEjATLDKDFPbIzr-b0gFCMwUBKrzkHIVUeTUhBxaiEBRWi6DvyfAOcO2uaGK7uZQvjGswOYXYVZmc78qpguy1Z9KzrA7SyW6zs_mXljuxuLOOWSbZ2onBTi6vQ0JGn29c4PcqeB8xp9aWVQQ5iNbb6frPotiXIZXSR1-vIi42Jf1b-9w49_B8dekSuD2UsVonOXbKDZk6PydXw9WJanz-pg_kHIf31mA priority: 102 providerName: Directory of Open Access Journals |
| Title | Parallel and distributed chimp-optimized LSTM for oil well-log reconstruction in China |
| URI | https://link.springer.com/article/10.1038/s41598-025-11077-9 https://www.ncbi.nlm.nih.gov/pubmed/40676071 https://www.proquest.com/docview/3231090402 https://www.proquest.com/docview/3231266971 https://doaj.org/article/81aa892fea8047ad9d51e455cb2049d5 |
| Volume | 15 |
| WOSCitedRecordID | wos001531692900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) (Open Access) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFyQuvAuBsjISN7Cahx3bJ0RRC0jsKoKClpPl2DFEapNltyCVX8_YyW6FeFy4jBzHiiaZsT2PeD6AJ0ZZk9nco_L6lDJnSipLXtPSG2kLyTLvXQSbEPO5XCxUNQbc1uNvlZs1MS7UrrchRr5fBENEocrlz5dfaUCNCtnVEULjMkwCbHbQc7EQ2xhLyGKxTI1nZdJC7q9xvwpnynJOg-MjqPplP4pl-_9ka_6WJ43bz9GN_2X8JlwfDU_yYtCUW3Cp6W7D1QGK8hxbryLE7_kd-FiZVQBYOSGmc8SFwroBE6txxH5pT5e0x0XmtP2B12_fH88IGr2kb09ICAJSfAKJLva2LC1pOxIxuu_Ch6PD45ev6Yi-QC0r5Bkt0VjgtWHCG8GwXeMHrFPXpDW6WBl2Cl9mrmZGpl45VytnU-aN9WixydyIYhd2ur5r7gNBp84wVos0NQXjvpS2sdw5XijDrSuyBJ5uZKCXQ5ENHZPjhdSDxDRKTEeJaZXAQRDTdmQokB07-tVnPc43LTNjpMp9g-wxYZxyPGsY57bO0SdyPIG9jbT0OGvX-kJUCTze3sb5FpIopmv6b8MYNGqUQK7vDcqx5QSNIxHq9SXwbKMtFw__-ws9-DcvD-FaHhQ2VvPcgx0UYPMIrtjvZ-16NY0aH6mcwuTgcF69m8bAAtJZXgUqkE6qN7Pq00_LSw1O |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuF8KA4wET2AtFzuxHxDiNlatrSpRpvFkHDuGSltS2gEqP4rfyLGTdEJc3vbAm-NYlh1_Pj6X-HwAD7U0OjaJQ_C6iDKrMyoyXtDMaWFSwWLnbCCbyMdjcXAgJxvwo7sL43-r7GRiENS2Nt5Hvp16RUQi5JJn88_Us0b56GpHodHAYq9cfUOTbfl08ArX91GS7LyevtylLasANSwVxzTDQ5AXmuVO5wzLRRylRWTLqEDTIcbK3GWxLZgWkZPWFtKaiDltHGoiItF5iv2egU2GYI96sDkZjCbv114dHzdjsWxv50Sp2F7iCelvsSWcelMrp_KXEzAQBfxJu_0tMhsOvJ1L_9unugwXW9WaPG_2whXYKKurcK4h21xh6U0gMV5dg_2JXngKmUOiK0usTx3sWb9KS8yn2dGc1ihGj2bf8Xn4djoiqNaTenZIvJuTYg8kOBHWiXfJrCKBhfw6vDuV6d2AXlVX5S0gaLZqxoo8inTKuMuEKQ23lqdSc2PTuA-PuzVX8yaNiArh_1SoBiEKEaICQpTswwsPi3VLnwI8VNSLj6qVKErEWguZuBKHx3JtpeVxyTg3RYJWn-V92OrQoVq5tFQn0OjDg_VrlCg-TKSrsv7StEG1TeY46psNGNcjQfUv9xkJ-_CkQ-dJ53-f0O1_j-U-nN-djoZqOBjv3YELid8sIXfpFvRwMcu7cNZ8PZ4tF_fa_Ubgw2nj9ic0kmU_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKFBAb3o-BAkaCFViTxHZsLxCitANVy2gEBXVnHDuGSG0yzBTQ8Gl8HddOMhXiseuCnZNYlh0f35ftexB6aJQ1qc08gNcnhDmTE5nzguTeSEslS713kWxCTCby4EBN19CP_i5MOFbZy8QoqF1jQ4x8RIMhogBy2ch3xyKmW-Nns88kMEiFndaeTqOFyG65_Abu2-LpzhbM9aMsG2_vv3hFOoYBYhmVxyQHhcgLw4Q3gkG5SBNaJK5MCnAjUngpfJ66ghmZeOVcoZxNmDfWg1UiMyMotHsGrQsKTs8ArW9uT6ZvVhGesIfGUtXd1EmoHC1AW4YbbRknwe0SRP2iDSNpwJ8s3d92aaPyG1_6n3_bZXSxM7nx83aNXEFrZX0VnWtJOJdQehnJjZfX0PupmQdqmUNsaoddSCkc2MBKh-2n6mhGGhCvR9V3eN57u_8ag7mPm-oQh_AngRZwDC6sEvLiqsaRnfw6encqw7uBBnVTl7cQBnfWMFaIJDGUcZ9LW1ruHKfKcOtoOkSP-_nXsza9iI7HAqjULVo0oEVHtGg1RJsBIquaITV4fNHMP-pO0miZGiNV5kvoHhPGKcfTknFuiwy8QceHaKNHiu7k1UKfwGSIHqw-g6QJ20emLpsvbR0w55SAXt9sgbnqCZiFImQqHKInPVJPGv_7gG7_uy_30XkAq97bmezeQReysG5iStMNNIC5LO-is_brcbWY3-uWHkYfThu2PwEvv23Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+distributed+chimp-optimized+LSTM+for+oil+well-log+reconstruction+in+China&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Zisong&rft.au=Cheng%2C+Zhiliang&rft.au=Wang%2C+Wenxiang&rft.au=Ding%2C+Xiujian&rft.date=2025-07-17&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=25950&rft_id=info:doi/10.1038%2Fs41598-025-11077-9&rft_id=info%3Apmid%2F40676071&rft.externalDocID=40676071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |