Parallel and distributed chimp-optimized LSTM for oil well-log reconstruction in China

Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 25950 - 21
Hlavní autoři: Wang, Zisong, Cheng, Zhiliang, Wang, Wenxiang, Ding, Xiujian, Xia, Lu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 17.07.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Well-log analysis contributes significantly to effective oil and gas extraction, but inconsistent logs may render subsequent geological analyses useless. This study tackles this problem by devising a deep Long Short-Term Memory (LSTM) model that uses the new Parallel and Distributed Chimp Optimization Algorithm (PDCOA). PDCOA’s primary goal is to speed up the process of hyperparameter tuning for LSTMs by letting them work in parallel and across multiple computers, with separate groups of computers communicating with each other regularly to ensure the system is diverse and reliable. It is designed for reconstructing missing well-log data, showing that the proposed method is more scalable, efficient, and accurate as a predictor. This feature makes it a valuable tool for geological interpretation and estimating hydrocarbon resources.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-11077-9