Multiple-Instance Learning Algorithms for Computer-Aided Detection

Many computer-aided diagnosis (CAD) problems can be best modelled as a multiple-instance learning (MIL) problem with unbalanced data, i.e., the training data typically consists of a few positive bags, and a very large number of negative instances. Existing MIL algorithms are much too computationally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 55; H. 3; S. 1015 - 1021
Hauptverfasser: Dundar, M. Murat, Fung, Glenn, Krishnapuram, Balaji, Rao, R. Bharat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many computer-aided diagnosis (CAD) problems can be best modelled as a multiple-instance learning (MIL) problem with unbalanced data, i.e., the training data typically consists of a few positive bags, and a very large number of negative instances. Existing MIL algorithms are much too computationally expensive for these datasets. We describe CH, a framework for learning a convex hull representation of multiple instances that is significantly faster than existing MIL algorithms. Our CH framework applies to any standard hyperplane-based learning algorithm, and for some algorithms, is guaranteed to find the global optimal solution. Experimental studies on two different CAD applications further demonstrate that the proposed algorithm significantly improves diagnostic accuracy when compared to both MIL and traditional classifiers. Although not designed for standard MIL problems (which have both positive and negative bags and relatively balanced datasets), comparisons against other MIL methods on benchmark problems also indicate that the proposed method is competitive with the state-of-the-art.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2007.909544