An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three

We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph G=Gn,mδ≥3. In this model G is drawn uniformly from graphs with vertex set [n], m edges and minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently large...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Random structures & algorithms Ročník 47; číslo 1; s. 73 - 98
Hlavní autori: Frieze, Alan, Haber, Simi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Predmet:
ISSN:1042-9832, 1098-2418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph G=Gn,mδ≥3. In this model G is drawn uniformly from graphs with vertex set [n], m edges and minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently large then our algorithm runs in O(n1+o(1)) time and succeeds w.h.p. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 73–98, 2015
Bibliografia:ark:/67375/WNG-CWMDS5GF-8
istex:CC633BA9C7754A4538988167FB7C1F4776952F27
Supported by NSF (CCF2013110).
ArticleID:RSA20542
NSF - No. CCF2013110
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20542