Convergence analysis of a proximal point algorithm for minimizing differences of functions

Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 66; číslo 1; s. 129 - 147
Hlavní autoři: An, Nguyen Thai, Nam, Nguyen Mau
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 02.01.2017
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences of convex functions. In this paper, we introduce a generalized proximal point algorithm to minimize the difference of a nonconvex function and a convex function. We also study convergence results of this algorithm under the main assumption that the objective function satisfies the Kurdyka-ᴌojasiewicz property.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2016.1253694