Convergence analysis of a proximal point algorithm for minimizing differences of functions
Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences...
Uloženo v:
| Vydáno v: | Optimization Ročník 66; číslo 1; s. 129 - 147 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
02.01.2017
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences of convex functions. In this paper, we introduce a generalized proximal point algorithm to minimize the difference of a nonconvex function and a convex function. We also study convergence results of this algorithm under the main assumption that the objective function satisfies the Kurdyka-ᴌojasiewicz property. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2016.1253694 |