Convergence analysis of a proximal point algorithm for minimizing differences of functions
Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences...
Gespeichert in:
| Veröffentlicht in: | Optimization Jg. 66; H. 1; S. 129 - 147 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Taylor & Francis
02.01.2017
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0233-1934, 1029-4945 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences of convex functions. In this paper, we introduce a generalized proximal point algorithm to minimize the difference of a nonconvex function and a convex function. We also study convergence results of this algorithm under the main assumption that the objective function satisfies the Kurdyka-ᴌojasiewicz property. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2016.1253694 |