An interval fuzzy number-based fuzzy collaborative forecasting approach for DRAM yield forecasting

Most existing fuzzy collaborative forecasting (FCF) methods adopt type-1 fuzzy numbers to represent fuzzy forecasts. FCF methods based on interval-valued fuzzy numbers (IFNs) are not widely used. However, the inner and outer sections of an IFN-based fuzzy forecast provide meaning information that se...

Full description

Saved in:
Bibliographic Details
Published in:Complex & intelligent systems Vol. 7; no. 1; pp. 111 - 122
Main Authors: Chen, Toly, Chiu, Min-Chi
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.02.2021
Springer Nature B.V
Subjects:
ISSN:2199-4536, 2198-6053
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most existing fuzzy collaborative forecasting (FCF) methods adopt type-1 fuzzy numbers to represent fuzzy forecasts. FCF methods based on interval-valued fuzzy numbers (IFNs) are not widely used. However, the inner and outer sections of an IFN-based fuzzy forecast provide meaning information that serves different managerial purposes, which is a desirable feature for a FCF method. This study proposed an IFN-based FCF approach. Unlike existing IFN-based fuzzy association rules or fuzzy inference systems, the IFN-based FCF approach ensures that all actual values fall within the corresponding fuzzy forecasts. In addition, the IFN-based FCF approach optimizes the forecasting precision and accuracy with the outer and inner sections of the aggregation result, respectively. Based on the experimental results, the proposed FCF-II approach surpassed existing methods in forecasting the yield of a dynamic random access memory product.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2199-4536
2198-6053
DOI:10.1007/s40747-020-00179-8