Graph-Induced Aligned Learning on Subspaces for Hyperspectral and Multispectral Data

In this article, we have great interest in investigating a common but practical issue in remote sensing (RS)-can a limited amount of one information-rich (or high-quality) data, e.g., hyperspectral (HS) image, improve the performance of a classification task using a large amount of another informati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 59; no. 5; pp. 4407 - 4418
Main Authors: Hong, Danfeng, Kang, Jian, Yokoya, Naoto, Chanussot, Jocelyn
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we have great interest in investigating a common but practical issue in remote sensing (RS)-can a limited amount of one information-rich (or high-quality) data, e.g., hyperspectral (HS) image, improve the performance of a classification task using a large amount of another information-poor (low-quality) data, e.g., multispectral (MS) image? This question leads to a typical cross-modality feature learning. However, classic cross-modality representation learning approaches, e.g., manifold alignment, remain limited in effectively and efficiently handling such problems that the data from high-quality modality are largely absent. For this reason, we propose a novel graph-induced aligned learning (GiAL) framework by 1) adaptively learning a unified graph (further yielding a Laplacian matrix) from the data in order to align multimodality data (MS-HS data) into a latent shared subspace; 2) simultaneously modeling two regression behaviors with respect to labels and pseudo-labels under a multitask learning paradigm; and 3) dramatically updating the pseudo-labels according to the learned graph and refeeding the latest pseudo-labels into model learning of the next round. In addition, an optimization framework based on the alternating direction method of multipliers (ADMMs) is devised to solve the proposed GiAL model. Extensive experiments are conducted on two MS-HS RS data sets, demonstrating the superiority of the proposed GiAL compared with several state-of-the-art methods.
AbstractList In this article, we have great interest in investigating a common but practical issue in remote sensing (RS)-can a limited amount of one information-rich (or high-quality) data, e.g., hyperspectral (HS) image, improve the performance of a classification task using a large amount of another information-poor (low-quality) data, e.g., multispectral (MS) image? This question leads to a typical cross-modality feature learning. However, classic cross-modality representation learning approaches, e.g., manifold alignment, remain limited in effectively and efficiently handling such problems that the data from high-quality modality are largely absent. For this reason, we propose a novel graph-induced aligned learning (GiAL) framework by 1) adaptively learning a unified graph (further yielding a Laplacian matrix) from the data in order to align multimodality data (MS-HS data) into a latent shared subspace; 2) simultaneously modeling two regression behaviors with respect to labels and pseudo-labels under a multitask learning paradigm; and 3) dramatically updating the pseudo-labels according to the learned graph and refeeding the latest pseudo-labels into model learning of the next round. In addition, an optimization framework based on the alternating direction method of multipliers (ADMMs) is devised to solve the proposed GiAL model. Extensive experiments are conducted on two MS-HS RS data sets, demonstrating the superiority of the proposed GiAL compared with several state-of-the-art methods.
Author Chanussot, Jocelyn
Yokoya, Naoto
Hong, Danfeng
Kang, Jian
Author_xml – sequence: 1
  givenname: Danfeng
  orcidid: 0000-0002-3212-9584
  surname: Hong
  fullname: Hong, Danfeng
  email: hongdanfeng1989@gmail.com
  organization: CNRS, Grenoble INP, GIPSA-Lab, Univ. Grenoble Alpes, Grenoble, France
– sequence: 2
  givenname: Jian
  orcidid: 0000-0001-6284-3044
  surname: Kang
  fullname: Kang, Jian
  email: kangjian_1991@outlook.com
  organization: School of Electronic and Information Engineering, Soochow University, Suzhou, China
– sequence: 3
  givenname: Naoto
  orcidid: 0000-0002-7321-4590
  surname: Yokoya
  fullname: Yokoya, Naoto
  email: naoto.yokoya@riken.jp
  organization: Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
– sequence: 4
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn@hi.is
  organization: INRIA, CNRS, Grenoble INP, LJK, Univ. Grenoble Alpes, Grenoble, France
BackLink https://hal.science/hal-03429646$$DView record in HAL
BookMark eNp9kE9L5EAQxZtFYUfdD7B4CexpDxmrOv0nOQ6uzggjgo7npqdT0ZbYyXYngt_eDCNz8ODpweO9V8XvhB2FLhBjvxHmiFBdbJb3D3MOHOYFcEQBP9gMpSxzUEIcsRlgpXJeVvwnO0npBQCFRD1jm2W0_XN-E-rRUZ0tWv8UJl2TjcGHp6wL2cO4Tb11lLKmi9nqvaeYenJDtG1mQ53dju3gD84_O9gzdtzYNtGvTz1lj9dXm8tVvr5b3lwu1rkThRpyAulA1nzrkPNKVeQECOVK3TQlNspSqUHqRhZa1wVJbYXdCl7IydOlVlScsr_73Wfbmj76VxvfTWe9WS3WZudBIaZhod5wyv7ZZ_vY_R8pDealG2OY3jNcoiwlB9RTCvcpF7uUIjWHWQSzA212oM0OtPkEPXX0l47zgx18FyYgvv22eb5veiI6XKo4CKGw-AD_GYs8
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_MGRS_2021_3064051
crossref_primary_10_1109_TGRS_2021_3124913
crossref_primary_10_1016_j_isprsjprs_2021_10_010
crossref_primary_10_1080_01431161_2025_2487231
crossref_primary_10_1109_JSTARS_2021_3124308
crossref_primary_10_1371_journal_pone_0316900
crossref_primary_10_1371_journal_pone_0304999
crossref_primary_10_3390_app14125061
crossref_primary_10_1109_TIP_2022_3162964
crossref_primary_10_1080_01431161_2024_2370502
crossref_primary_10_1109_TGRS_2023_3326153
crossref_primary_10_1111_phor_70014
Cites_doi 10.1109/JSTARS.2017.2771482
10.1109/TGRS.2019.2957251
10.1109/TKDE.2009.191
10.1109/TGRS.2014.2317499
10.1109/TGRS.2013.2246837
10.1109/LGRS.2019.2919755
10.1109/TGRS.2020.2964617
10.1007/s11554-017-0742-z
10.1109/JSTARS.2017.2682189
10.1109/TGRS.2019.2936486
10.1109/CVPR.2017.421
10.1109/JSTSP.2018.2877497
10.1016/j.isprsjprs.2020.06.014
10.1016/j.isprsjprs.2019.09.008
10.1016/j.isprsjprs.2016.07.004
10.1109/TGRS.2019.2953069
10.1109/CVPR.2017.608
10.1038/nature14539
10.1109/TGRS.2019.2897139
10.1109/TGRS.2020.3000684
10.1109/TGRS.2018.2890705
10.1109/TIP.2018.2878958
10.1109/MGRS.2015.2440094
10.1109/MGRS.2016.2637824
10.1109/MC.2016.113
10.1109/TKDE.2013.111
10.1145/2647868.2654902
10.1016/j.isprsjprs.2018.10.006
10.1109/TGRS.2019.2899129
10.1162/NECO_a_00801
10.1109/CVPR.2015.7299149
10.1109/TGRS.2019.2907310
10.1109/TNN.2010.2091281
10.1109/TPAMI.2016.2640292
10.1109/LGRS.2017.2755061
10.1109/ICCV.2013.261
10.1145/1961189.1961199
10.1016/j.isprsjprs.2018.02.006
10.1109/MGRS.2020.2979764
10.1109/TNNLS.2020.2979546
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Attribution
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Attribution
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
DOI 10.1109/TGRS.2020.3021140
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 4418
ExternalDocumentID oai:HAL:hal-03429646v1
10_1109_TGRS_2020_3021140
9204461
Genre orig-research
GrantInformation_xml – fundername: AXA Research Fund
  funderid: 10.13039/501100001961
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: KAKENHI 18K18067
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
VOOES
ID FETCH-LOGICAL-c436t-e05c05d2bc122969ec4046c87ff81f6ae87057f5377d3e57a4ab423557f7876e3
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642096400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Oct 14 20:52:14 EDT 2025
Mon Jun 30 10:14:52 EDT 2025
Sat Nov 29 02:50:08 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 02:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords subspace learning
fusion
Cross-modality
multispectral (MS)
semisupervised
hyperspectral (HS)
remote sensing (RS)
graph learning
pseudo-labels
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-e05c05d2bc122969ec4046c87ff81f6ae87057f5377d3e57a4ab423557f7876e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6284-3044
0000-0002-3212-9584
0000-0002-7321-4590
0000-0003-4817-2875
OpenAccessLink https://hal.science/hal-03429646
PQID 2515852017
PQPubID 85465
PageCount 12
ParticipantIDs proquest_journals_2515852017
hal_primary_oai_HAL_hal_03429646v1
ieee_primary_9204461
crossref_primary_10_1109_TGRS_2020_3021140
crossref_citationtrail_10_1109_TGRS_2020_3021140
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref18
yao (ref19) 2020
ref46
ref45
ref47
ref42
ref44
ref43
ref49
yokoya (ref48) 2016
ref7
ref9
ref4
ref3
ref6
ref5
hong (ref23) 2020
ref40
ref35
ref37
ref30
wang (ref8) 2011
ref33
hong (ref11) 2020
ref2
ref1
ref39
ref38
chang (ref36) 2017
ref24
ref26
ref25
ref20
ref22
ref21
ngiam (ref32) 2011
ref28
ref27
lecun (ref31) 2015; 521
ji (ref41) 2009
ref29
zhu (ref34) 2003
References_xml – ident: ref6
  doi: 10.1109/JSTARS.2017.2771482
– ident: ref14
  doi: 10.1109/TGRS.2019.2957251
– ident: ref4
  doi: 10.1109/TKDE.2009.191
– ident: ref28
  doi: 10.1109/TGRS.2014.2317499
– ident: ref24
  doi: 10.1109/TGRS.2013.2246837
– ident: ref7
  doi: 10.1109/LGRS.2019.2919755
– ident: ref40
  doi: 10.1109/TGRS.2020.2964617
– ident: ref25
  doi: 10.1007/s11554-017-0742-z
– ident: ref10
  doi: 10.1109/JSTARS.2017.2682189
– ident: ref16
  doi: 10.1109/TGRS.2019.2936486
– start-page: 1763
  year: 2017
  ident: ref36
  article-title: Cross-domain kernel induction for transfer learning
  publication-title: Proc AAAI
– ident: ref29
  doi: 10.1109/CVPR.2017.421
– ident: ref38
  doi: 10.1109/JSTSP.2018.2877497
– ident: ref3
  doi: 10.1016/j.isprsjprs.2020.06.014
– ident: ref43
  doi: 10.1016/j.isprsjprs.2019.09.008
– start-page: 1077
  year: 2009
  ident: ref41
  article-title: Linear dimensionality reduction for multi-label classification
  publication-title: Proc IJCAI
– ident: ref21
  doi: 10.1016/j.isprsjprs.2016.07.004
– ident: ref39
  doi: 10.1109/TGRS.2019.2953069
– ident: ref42
  doi: 10.1109/CVPR.2017.608
– volume: 521
  start-page: 436
  year: 2015
  ident: ref31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref26
  doi: 10.1109/TGRS.2019.2897139
– ident: ref18
  doi: 10.1109/TGRS.2020.3000684
– start-page: 912
  year: 2003
  ident: ref34
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc ICML
– start-page: 689
  year: 2011
  ident: ref32
  article-title: Multimodal deep learning
  publication-title: Proc ICML
– ident: ref5
  doi: 10.1109/TGRS.2018.2890705
– ident: ref1
  doi: 10.1109/TIP.2018.2878958
– ident: ref46
  doi: 10.1109/MGRS.2015.2440094
– ident: ref47
  doi: 10.1109/MGRS.2016.2637824
– year: 2020
  ident: ref23
  article-title: More diverse means better: Multimodal deep learning meets remote-sensing imagery classification
  publication-title: IEEE Trans Geosci Remote Sens
– ident: ref15
  doi: 10.1109/MC.2016.113
– ident: ref35
  doi: 10.1109/TKDE.2013.111
– start-page: 1541
  year: 2011
  ident: ref8
  article-title: Heterogeneous domain adaptation using manifold alignment
  publication-title: Proc IJCAI
– year: 2020
  ident: ref11
  article-title: Graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– ident: ref20
  doi: 10.1145/2647868.2654902
– ident: ref37
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref12
  doi: 10.1109/TGRS.2019.2899129
– ident: ref33
  doi: 10.1162/NECO_a_00801
– ident: ref44
  doi: 10.1109/CVPR.2015.7299149
– ident: ref17
  doi: 10.1109/TGRS.2019.2907310
– ident: ref9
  doi: 10.1109/TNN.2010.2091281
– ident: ref30
  doi: 10.1109/TPAMI.2016.2640292
– ident: ref2
  doi: 10.1109/LGRS.2017.2755061
– ident: ref27
  doi: 10.1109/ICCV.2013.261
– ident: ref49
  doi: 10.1145/1961189.1961199
– ident: ref22
  doi: 10.1016/j.isprsjprs.2018.02.006
– year: 2020
  ident: ref19
  article-title: Cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution
  publication-title: arXiv 2007 05230
– year: 2016
  ident: ref48
  article-title: Airborne hyperspectral data over Chikusei
– ident: ref13
  doi: 10.1109/MGRS.2020.2979764
– ident: ref45
  doi: 10.1109/TNNLS.2020.2979546
SSID ssj0014517
Score 2.4251251
Snippet In this article, we have great interest in investigating a common but practical issue in remote sensing (RS)-can a limited amount of one information-rich (or...
In this article, we have great interest in investigating a common but practical issue in remote sensing (RS)—can a limited amount of one information-rich (or...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4407
SubjectTerms Cross-modality
Data
Engineering Sciences
fusion
graph learning
hyperspectral (HS)
Hyperspectral imaging
Image classification
Image quality
Kernel
Labels
Learning
Machine learning
Manifolds
multispectral (MS)
Optimization
pseudo-labels
Remote sensing
remote sensing (RS)
semisupervised
Signal and Image processing
subspace learning
Subspaces
Task analysis
Training
Title Graph-Induced Aligned Learning on Subspaces for Hyperspectral and Multispectral Data
URI https://ieeexplore.ieee.org/document/9204461
https://www.proquest.com/docview/2515852017
https://hal.science/hal-03429646
Volume 59
WOSCitedRecordID wos000642096400055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xfBPEkRtu0Sdrj4msPIqIreCsxSVdBurKu_n5nsrEIiuCthISGTpN8X2bmG4ADpxzyBpNxi_CX57IU3CRKcFtkLkucwjO5CMUm9PV18fBQ3kzBUZsL470PwWf-mB6DL98N7TtdlZ2UgtyPyHWmtdaTXK3WY5DLNKZGK44kQkQPZpqUJ_3L2ztkggIJKp5oKd1zfDuDpp8oAjKUVvmxH4dD5mLpf9NbhsUIJll3Yv0VmPLNKix8kxhchbkQ4mnf1qB_SdrUnGp1WO9Y9-V5gFssiwKrAzZsGO0irxSjxRDKsh5S1Ekm5ghfYhrHQrZu23JmxmYd7i_O-6c9HmsqcJtnasx9Im0inXi0qRClKr3NkSHbQtd1kdbKeFy_Utcy09plXmqTm0dEXBLbcGkrn23ATDNs_CYwndbWKIeAl1TQLCFJh2ADSa-j-upFB5Kvr1zZKDhOdS9eqkA8krIiw1RkmCoapgOH7ZDXidrGX5330XRtP9LJ7nWvKmojXcNS5eoj7cAaGartFW3UgZ0vS1dx0b5VgmYtERHprd9HbcO8oJCWEO-4AzPj0bvfhVn7gd9-tBf-x09Zv9j5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB6stWgf_NnSq7YG8Uka3c1usruPh1ZPPA_RE3wLMclaQfbkPP37ncnFRVAKvi0hYcN-m2S-zMw3ANtOOeQNJuMWzV-ey0pwkyjBbZm5LHEKz-QyFJsoBoPy6qo6m4E_bS6M9z4En_ldegy-fDeyj3RVtlcJcj8i1_ks81yk02yt1meQyzQmRyuONEJEH2aaVHvDo_ML5IICKSqeaSnddLw6hT79oxjIUFzlzY4cjpnDpY9NcBkWoznJulP8V2DGN6vw9ZXI4Cp8CUGe9mENhkekTs2pWof1jnXvbm9wk2VRYvWGjRpG-8g9RWkxNGZZD0nqNBdzjC8xjWMhX7dtOTAT8w0uD_8O93s8VlXgNs_UhPtE2kQ6cW1TISpVeZsjR7ZlUddlWivjcQXLopZZUbjMy8Lk5hptLoltuLiVz77DbDNq_A9gRVpboxyavKSDZsmWdGhuIO11VGG97EDy8pW1jZLjVPniTgfqkVSagNEEjI7AdGCnHXI_1dv4X-cthK7tR0rZvW5fUxspG1YqV09pB9YIqLZXxKgDGy9I67hsH7SgWUu0iYqf74_ahPne8LSv-8eDk3VYEBTgEqIfN2B2Mn70v2DOPiEO49_h33wGzTLcQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Induced+Aligned+Learning+on+Subspaces+for+Hyperspectral+and+Multispectral+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Hong%2C+Danfeng&rft.au=Yokoya%2C+Naoto&rft.au=Chanussot%2C+Jocelyn&rft.au=Kang%2C+Jian&rft.date=2021-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=59&rft.issue=5&rft.spage=4407&rft.epage=4418&rft_id=info:doi/10.1109%2FTGRS.2020.3021140&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03429646v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon