Anti-deadzone adaptive fuzzy dynamic surface control for planar space robot with elastic base and flexible links

In order to combat the impact of the dead zone and reduce vibration of the space robot's elastic base and flexible links, the trajectory tracking and vibration suppression of a multi-flexible-link free-floating space robot system are addressed. First, the elastic connection between the base and...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; pp. 21604 - 15
Main Authors: Huang, Xiao-qin, Huang, Deng-feng
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 07.12.2023
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to combat the impact of the dead zone and reduce vibration of the space robot's elastic base and flexible links, the trajectory tracking and vibration suppression of a multi-flexible-link free-floating space robot system are addressed. First, the elastic connection between the base and the link is considered as a linear spring. Then the assumed mode approach is used to derive the dynamic model of the flexible system. Secondly, a slow subsystem characterizing the rigid motion and a fast subsystem relating to vibration of the elastic base and multiple flexible links are generated utilizing two-time scale hypotheses of singular perturbation. For the slow subsystem with a dead zone in joint input torque, a dynamic surface control method with adaptive fuzzy approximator is designed. Dynamic surface control scheme is adopted to avoid calculation expansion and to simplify calculation. The fuzzy logic function is applied to approximate uncertain terms of the dynamic equation including the dead zone errors. For the fast subsystem, an optimal linear quadratic regulator controller is used to suppress the vibration of the multiple flexible links and elastic base, ensuring the stability and tracking accuracy of the system. Lastly, the simulation results verify the effectiveness of the proposed control strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-48750-w