Optimized Temporal Interference Stimulation Based on Convex Optimization: A Computational Study
Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consum...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering Jg. 33; S. 1400 - 1410 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency. |
|---|---|
| AbstractList | Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency. Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency.Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency. |
| Author | Hou, Xiaohan Li, Long Li, Yang Liu, Tian Zhu, Xiaoqi Geng, Chao |
| Author_xml | – sequence: 1 givenname: Chao surname: Geng fullname: Geng, Chao email: gengchao@stu.xjtu.edu.cn organization: Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang email: 3121313006@stu.xjtu.edu.cn organization: Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Long orcidid: 0000-0002-5097-5733 surname: Li fullname: Li, Long email: lilong3236165@126.com organization: Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Xiaoqi surname: Zhu fullname: Zhu, Xiaoqi email: x.zhu19@imperial.ac.uk organization: Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Xiaohan surname: Hou fullname: Hou, Xiaohan email: houxh21@mails.tsinghua.edu.cn organization: Weiyang College, Tsinghua University, Beijing, China – sequence: 6 givenname: Tian orcidid: 0000-0001-8944-6305 surname: Liu fullname: Liu, Tian email: tianliu@xjtu.edu.cn organization: Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40193272$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v1DAQtVAr-gF_ACGUI5ds_Z2EW1kVWKlqJXY5W_6YIFdJHOwEUX493s1SIQ71xW9m3nsjzbtAJ0MYAKE3BK8Iwc3V7m779WZFMRUrJkTNsHyBzklGJaYEn-wx4yVnFJ-hi5QeMCaVFNVLdMYxaRit6DlS9-Pke_8bXLGDfgxRd8VmmCC2EGGwUGzzeO705MNQfNQp8zJYh-En_CqO2sPwQ3Gd2_04T4cy22yn2T2-Qqet7hK8Pv6X6Nunm936S3l7_3mzvr4tLWdyKq0UjaVOCsmBAzMNBekExpLIxhgiLG4ddeDMniSJbiojHRYtMdxAYxt2iTaLrwv6QY3R9zo-qqC9OjRC_K50nLztQIm2ZdIY2jrBeYWFxkxIU2fkqK21zl7vF68xhh8zpEn1PlnoOj1AmJNipK4ElbTGmfruSJ1ND-5p8d8DZwJdCDaGlCK0TxSC1T5FdUhR7VNUxxSzqP5PZP1y1ilq3z0vfbtIPQD8s6sRJD_2B3UYquU |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1016_j_brs_2025_07_006 |
| Cites_doi | 10.1109/ACCESS.2019.2947857 10.1088/1741-2552/abca15 10.1088/1741-2552/ab92b3 10.1152/jn.00701.2016 10.1016/j.neuroimage.2015.06.067 10.1002/jmri.21049 10.1038/s41380-023-02150-8 10.1038/s41593-023-01456-8 10.1016/j.brs.2019.06.021 10.1007/s10827-006-0015-5 10.3389/fncel.2017.00214 10.1016/j.cmpb.2023.107878 10.1186/s12984-024-01451-5 10.1007/s11065-023-09589-0 10.1016/j.wneu.2011.02.029 10.1016/j.neuroimage.2019.116403 10.1016/j.compbiomed.2022.105337 10.1016/j.cub.2013.12.041 10.1088/1741-2552/ab208d 10.1016/j.neuroimage.2023.120331 10.1016/j.brainresbull.2007.01.004 10.1109/EMBC.2015.7318340 10.1002/hbm.26181 10.1038/s41593-023-01457-7 10.1088/1741-2560/8/4/046011 10.1016/j.cell.2017.05.024 10.3389/fnins.2024.1332135 10.1016/j.brs.2021.03.007 10.1109/TBME.2004.827925 10.1016/j.neuroimage.2015.01.033 10.1016/j.neuroimage.2024.120581 10.1152/jn.90372.2008 10.1080/09602011.2011.557292 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1016/j.neuroimage.2013.02.049 10.1016/S0166-2236(00)01547-2 10.1016/j.neuroimage.2019.116124 10.1088/1741-2552/abd2c9 10.1038/s41598-020-68660-5 10.1038/s41467-024-48962-2 10.1016/j.brs.2015.01.401 10.1016/j.jad.2006.10.026 10.1049/el.2020.2295 10.1109/TBME.2019.2919912 10.1016/j.clinph.2017.01.004 10.1109/EMBC46164.2021.9631012 10.1016/j.brs.2018.09.010 10.1007/s00221-019-05666-0 10.1016/j.bbr.2012.11.038 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.1109/TNSRE.2025.3558306 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 1410 |
| ExternalDocumentID | oai_doaj_org_article_5ff36bb2fd544705a0356b8705d2c8aa 40193272 10_1109_TNSRE_2025_3558306 10951111 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program Project grantid: 2021YFC2400203 funderid: 10.13039/501100012166 – fundername: Shaanxi Province Key Research and Development Program Project grantid: 2023-YBSF-120 funderid: 10.13039/501100012166 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c436t-c659c2d6564e4e3b92e6d5006169bb15c0fd2dedbc2d661a97b6d05f1b4be9c93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001468767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:50:03 EDT 2025 Fri Jul 11 18:47:07 EDT 2025 Sat May 31 02:14:04 EDT 2025 Tue Nov 18 22:33:35 EST 2025 Sat Nov 29 08:01:15 EST 2025 Wed Aug 27 02:03:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-c659c2d6564e4e3b92e6d5006169bb15c0fd2dedbc2d661a97b6d05f1b4be9c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8944-6305 0000-0002-5097-5733 |
| OpenAccessLink | https://doaj.org/article/5ff36bb2fd544705a0356b8705d2c8aa |
| PMID | 40193272 |
| PQID | 3187526280 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2025_3558306 crossref_primary_10_1109_TNSRE_2025_3558306 ieee_primary_10951111 doaj_primary_oai_doaj_org_article_5ff36bb2fd544705a0356b8705d2c8aa pubmed_primary_40193272 proquest_miscellaneous_3187526280 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref45 doi: 10.1109/ACCESS.2019.2947857 – ident: ref22 doi: 10.1088/1741-2552/abca15 – ident: ref43 doi: 10.1088/1741-2552/ab92b3 – ident: ref17 doi: 10.1152/jn.00701.2016 – ident: ref35 doi: 10.1016/j.neuroimage.2015.06.067 – ident: ref32 doi: 10.1002/jmri.21049 – ident: ref11 doi: 10.1038/s41380-023-02150-8 – ident: ref48 doi: 10.1038/s41593-023-01456-8 – ident: ref7 doi: 10.1016/j.brs.2019.06.021 – ident: ref16 doi: 10.1007/s10827-006-0015-5 – ident: ref4 doi: 10.3389/fncel.2017.00214 – ident: ref37 doi: 10.1016/j.cmpb.2023.107878 – ident: ref49 doi: 10.1186/s12984-024-01451-5 – ident: ref8 doi: 10.1007/s11065-023-09589-0 – ident: ref2 doi: 10.1016/j.wneu.2011.02.029 – ident: ref39 doi: 10.1016/j.neuroimage.2019.116403 – ident: ref46 doi: 10.1016/j.compbiomed.2022.105337 – ident: ref6 doi: 10.1016/j.cub.2013.12.041 – ident: ref42 doi: 10.1088/1741-2552/ab208d – ident: ref30 doi: 10.1016/j.neuroimage.2023.120331 – ident: ref10 doi: 10.1016/j.brainresbull.2007.01.004 – ident: ref33 doi: 10.1109/EMBC.2015.7318340 – ident: ref31 doi: 10.1002/hbm.26181 – ident: ref18 doi: 10.1038/s41593-023-01457-7 – ident: ref20 doi: 10.1088/1741-2560/8/4/046011 – ident: ref14 doi: 10.1016/j.cell.2017.05.024 – ident: ref21 doi: 10.3389/fnins.2024.1332135 – ident: ref9 doi: 10.1016/j.brs.2021.03.007 – ident: ref34 doi: 10.1109/TBME.2004.827925 – ident: ref36 doi: 10.1016/j.neuroimage.2015.01.033 – ident: ref19 doi: 10.1016/j.neuroimage.2024.120581 – ident: ref41 doi: 10.1152/jn.90372.2008 – ident: ref1 doi: 10.1080/09602011.2011.557292 – ident: ref13 doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: ref23 doi: 10.1016/j.neuroimage.2013.02.049 – ident: ref15 doi: 10.1016/S0166-2236(00)01547-2 – ident: ref26 doi: 10.1016/j.neuroimage.2019.116124 – ident: ref29 doi: 10.1088/1741-2552/abd2c9 – ident: ref24 doi: 10.1038/s41598-020-68660-5 – ident: ref47 doi: 10.1038/s41467-024-48962-2 – ident: ref40 doi: 10.1016/j.brs.2015.01.401 – ident: ref3 doi: 10.1016/j.jad.2006.10.026 – ident: ref28 doi: 10.1049/el.2020.2295 – ident: ref27 doi: 10.1109/TBME.2019.2919912 – ident: ref12 doi: 10.1016/j.clinph.2017.01.004 – ident: ref25 doi: 10.1109/EMBC46164.2021.9631012 – ident: ref38 doi: 10.1016/j.brs.2018.09.010 – ident: ref44 doi: 10.1007/s00221-019-05666-0 – ident: ref5 doi: 10.1016/j.bbr.2012.11.038 |
| SSID | ssj0017657 |
| Score | 2.4520166 |
| Snippet | Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight... |
| SourceID | doaj proquest pubmed crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1400 |
| SubjectTerms | Adult Algorithms Brain - physiology Computer Simulation Deep Brain Stimulation - methods Electric fields Electrodes Electrodes, Implanted Electroencephalography Female Finite element analysis finite element method Head Humans Image segmentation Interference Magnetic resonance imaging Male Mathematical models noninvasive brain stimulation Optimization Scalp Temporal interference (TI) stimulation |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aRPpi_ai6tkoE9UW2ZrP5uPStLS0-ndKe0LeQjwkU6p20d6L-9U6y2aN9qODThk2y2TAzycwk8xtC3qHsgYxJtgFccd2k1skY22AYc9pHFU0sySb0dDo5Pzdfa7B6iYUBgHL5DPZysZzlx0VYZVcZSjjqA12O5L2vtRqCtdZHBloVWE-UYNGKnrMxQoaZT7Pp2ekx2oJc7mU0cdSSN8lDNCxQd9H81oZUcPtropW7dc6y95xs_edfPyaPqpJJDwaueELuwfwpeX8TUJjOBjQB-oGe3sLqfkbsF1xFvl_8gUhnA27VJS1-wxoZSM-wuib9ooe4CUaKhaN8e_0XrX1L5T49oEPSiHHQfGnx9zb5dnI8O_rc1jQMbRC9WrZBSRN4RMVPgIDeGw4qyqz7KON9JwNLkUeIPjdSnTPaq8hk6rzwYILpn5ON-WIOLwntexBuovAhuUgJTRXOA64a0TgmIfGGdCMtbKjzzqkyLm2xVZixhZQ2k9JWUjbk47rPjwGh45-tDzOJ1y0zunZ5gSSzVVitTKlX3vMUpRCaScd6qTyubDLyMHGuIduZzDeGGyjckLcjx1iU0nz04uawWF1bXDm15IpPWENeDKy07j0y4qs7vrpDNvMMBr_PLtlYXq3gNXkQfi4vrq_eFCH4CzPhAwo priority: 102 providerName: IEEE |
| Title | Optimized Temporal Interference Stimulation Based on Convex Optimization: A Computational Study |
| URI | https://ieeexplore.ieee.org/document/10951111 https://www.ncbi.nlm.nih.gov/pubmed/40193272 https://www.proquest.com/docview/3187526280 https://doaj.org/article/5ff36bb2fd544705a0356b8705d2c8aa |
| Volume | 33 |
| WOSCitedRecordID | wos001468767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxFLag4sAFUSgwUCIjARc01PE67q2tWnEKqA1SbpZXqVKbojZFwK_v8zJROAAX5jKjsS0v79l-z8v3IfQW-l4UIYneR1uWblJvRQi914RY5YIMOhSyCTWbDYuF_rJB9ZXPhFV44NpweyIlJp2jKQjOFRGWMCEdaJkI1A-2mEZE6dGZavsHShaMT-jOvOeMkvG6DNF789nZ6TE4hlR8zNDiLHMdbUxJBbm_Ua382eoss8_JY_SomY34oBZ3G92Lyyfo3SZEMJ5XfAD8Hp_-hr79FJnPMC5cnv-KAc8rEtUFLiuB7a4fPoPgRuOFD2FaCxg-jvJ59B-4pS2B-_gAVxqIMdN8DPHnDvp6cjw_-tQ3YoXecyZXvZdCexrAlOORR-Y0jTKIbM1I7dxUeJICDTG4HElOrVZOBiLS1HEXtdfsGdpaXi3jC4QZi9wOEl6C8pTA-aDUwzgQtCUiJtqh6di2xrd6Z_KLC1O8D6JNkYfJ8jBNHh36sE7zrWJu_DX2YRbZOmbGyy4_QItM0yLzLy3q0E4W-EZ2YHnC06E3owYY6Hd5M8Uu49XtjYGxUAkq6UA69Lyqxjo1-KxgFiv68n8U7RV6mKtbl3120dbq-ja-Rg_899X5zfUE3VeLYVKUf1IuL94BBFQFzw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-kivbFz6rrZwT1RbZms0n24ltbWirWU9oV-hbyCYV6J-2dqH-9k2z2aB8q-LRhk2w2zEwyM8n8BuA1yl4QPoraBZNdN7E2wvvaKUpNZ730yudkE910Ojk-Vl9LsHqOhQkh5MtnYTMV81m-n7tlcpWhhKM-0KRI3uuCc0aHcK3VoUEnM7AnyjCvecvoGCND1ft-enS4i9YgE5sJTxz15HW4iaYFai8du7QlZeT-kmrlaq0z7z57d_7zv-_C7aJmkq2BL-7BtTC7D28uQgqTfsATIG_J4SW07gegv-A68v3kT_CkH5CrTkn2HJbYQHKE1SXtF9nGbdATLOyk--u_SOmbKz-QLTKkjRgHTdcWf2_At73dfme_LokYasdbuaidFMoxj6ofDzy0VrEgvUjaj1TWNsLR6JkP3qZGsjGqs9JTERvLbVBOtQ9hbTafhcdA2jZwM5H4EIzHiMYKYw7XDa8MFSGyCpqRFtqVeadkGac6WytU6UxKnUipCykreLfq82PA6Phn6-1E4lXLhK-dXyDJdBFXLWJspbUsemS0jgpDWyEtrm3CMzcxpoKNROYLww0UruDVyDEa5TQdvphZmC_PNa6dnWCSTWgFjwZWWvUeGfHJFV99Cbf2-88H-uDj9NNTWE-zGbxAz2BtcbYMz-GG-7k4OT97kQXiL81_BlE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Temporal+Interference+Stimulation+Based+on+Convex+Optimization%3A+A+Computational+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Geng%2C+Chao&rft.au=Li%2C+Yang&rft.au=Li%2C+Long&rft.au=Zhu%2C+Xiaoqi&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=1400&rft_id=info:doi/10.1109%2FTNSRE.2025.3558306&rft_id=info%3Apmid%2F40193272&rft.externalDocID=40193272 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |