Optimized Temporal Interference Stimulation Based on Convex Optimization: A Computational Study

Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consum...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 1400 - 1410
Main Authors: Geng, Chao, Li, Yang, Li, Long, Zhu, Xiaoqi, Hou, Xiaohan, Liu, Tian
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2025
Subjects:
ISSN:1534-4320, 1558-0210, 1558-0210
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2025.3558306