Optimized Temporal Interference Stimulation Based on Convex Optimization: A Computational Study

Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consum...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 33; s. 1400 - 1410
Hlavní autori: Geng, Chao, Li, Yang, Li, Long, Zhu, Xiaoqi, Hou, Xiaohan, Liu, Tian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2025
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Temporal interference (TI) stimulation is a non-invasive method targeting deep brain regions by applying two pairs of high-frequency currents with a slight frequency difference to the scalp. However, optimizing electrode configurations for TI via computational modeling is challenging and time-consuming due to the non-convex nature of the optimization. We propose a convex optimization-based method (CVXTI) for optimizing TI electrode configurations. We decompose the TI optimization into two convex steps, enabling rapid determination of electrode pair configurations. CVXTI accommodates various optimization objectives by incorporating different objective functions, thereby enhancing the focality of the stimulation field. Performance analysis of CVXTI shows superior results compared to other methods, particularly in deep brain regions. Subject variability analysis on four individuals highlights the necessity of customized stimulus optimization. CVXTI leverages the distribution characteristics of the TI envelope electric field to optimize electrode configurations, enhancing the optimization efficiency.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2025.3558306