Scalable modeling and solution of stochastic multiobjective optimization problems

•Present a computing framework for stochastic multiobjective optimization.•Use a nested CVaR metric to trade-off multiple random objectives.•Show that nested CVaR can be formulated as a standard NLP.•Present a combined heat and power study to demonstrate developments. We present a scalable computing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 99; číslo C; s. 185 - 197
Hlavní autoři: Cao, Yankai, Fuentes-Cortes, Luis Fabian, Chen, Siyu, Zavala, Victor M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Kingdom Elsevier Ltd 06.04.2017
Elsevier
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Present a computing framework for stochastic multiobjective optimization.•Use a nested CVaR metric to trade-off multiple random objectives.•Show that nested CVaR can be formulated as a standard NLP.•Present a combined heat and power study to demonstrate developments. We present a scalable computing framework for the solution stochastic multiobjective optimization problems. The proposed framework uses a nested conditional value-at-risk (nCVaR) metric to find compromise solutions among conflicting random objectives. We prove that the associated nCVaR minimization problem can be cast as a standard stochastic programming problem with expected value (linking) constraints. We also show that these problems can be implemented in a modular and compact manner using PLASMO (a Julia-based structured modeling framework) and can be solved efficiently using PIPS-NLP (a parallel nonlinear solver). We apply the framework to a CHP design study in which we seek to find compromise solutions that trade-off cost, water, and emissions in the face of uncertainty in electricity and water demands.
Bibliografie:USDOE
SC0014114
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2017.01.021