ASTM biomechanical study comparing the AxioMed lumbar viscoelastic disc to human lumbar disc data
Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness...
Uložené v:
| Vydané v: | Clinical biomechanics (Bristol) Ročník 130; s. 106686 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.12.2025
|
| Predmet: | |
| ISSN: | 0268-0033, 1879-1271, 1879-1271 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.
Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.
Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.
These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.
•Viscoelastic disc replacement mimics native lumbar stiffness across multiple modes.•Axial, flexion-extension and shear stiffness matched published disc values.•Rotation stiffness lower than native, leading to greater segmental mobility.•Static compression sustained 20,000 N without mechanical or functional failure.•First in vitro stiffness study of viscoelastic disc vs. human lumbar disc data. |
|---|---|
| AbstractList | Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.
Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.
Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.
These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.
•Viscoelastic disc replacement mimics native lumbar stiffness across multiple modes.•Axial, flexion-extension and shear stiffness matched published disc values.•Rotation stiffness lower than native, leading to greater segmental mobility.•Static compression sustained 20,000 N without mechanical or functional failure.•First in vitro stiffness study of viscoelastic disc vs. human lumbar disc data. Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.BACKGROUNDArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.METHODSTen AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.FINDINGSAxial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.INTERPRETATIONThese findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion. AbstractBackgroundArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. MethodsTen AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. FindingsAxial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. InterpretationThese findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion. Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion. |
| ArticleNumber | 106686 |
| Author | Costigan, William M. Chin, Kingsley R. Chebrolu, Sukanya McFarland, Mark W. Sung, Roger D. Thompson, Sandra Ilogu, Chukwunonso C. Seale, Jason A. Lore, Vito Spayde, Erik Carlson, Jeffrey R. Estevez, Hope Zimmers, Kari B. Pangarkar, Swapnil Humad, Aditya |
| Author_xml | – sequence: 1 givenname: Kingsley R. surname: Chin fullname: Chin, Kingsley R. email: kingsleychin@thelessinstitute.com organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA – sequence: 2 givenname: Sukanya surname: Chebrolu fullname: Chebrolu, Sukanya organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA – sequence: 3 givenname: Roger D. surname: Sung fullname: Sung, Roger D. organization: Colorado Springs Orthopaedic Group, Colorado Springs, CO, USA – sequence: 4 givenname: Jeffrey R. surname: Carlson fullname: Carlson, Jeffrey R. organization: Orthopaedic and Spine Center, Newport News, VA, USA – sequence: 5 givenname: Mark W. surname: McFarland fullname: McFarland, Mark W. organization: Orthopaedic and Spine Center, Newport News, VA, USA – sequence: 6 givenname: Erik surname: Spayde fullname: Spayde, Erik organization: St. Charles Spine Institute, Thousand Oaks, CA, USA – sequence: 7 givenname: William M. surname: Costigan fullname: Costigan, William M. organization: Congress Orthopaedic Associates, Pasadena, CA, USA – sequence: 8 givenname: Sandra surname: Thompson fullname: Thompson, Sandra organization: The Pain Center, Boise, ID, USA – sequence: 9 givenname: Vito surname: Lore fullname: Lore, Vito organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA – sequence: 10 givenname: Kari B. surname: Zimmers fullname: Zimmers, Kari B. organization: AxioMed LLC, Burlington, MA, USA – sequence: 11 givenname: Hope surname: Estevez fullname: Estevez, Hope organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA – sequence: 12 givenname: Swapnil surname: Pangarkar fullname: Pangarkar, Swapnil organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA – sequence: 13 givenname: Aditya surname: Humad fullname: Humad, Aditya organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA – sequence: 14 givenname: Chukwunonso C. surname: Ilogu fullname: Ilogu, Chukwunonso C. organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA – sequence: 15 givenname: Jason A. surname: Seale fullname: Seale, Jason A. organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41166787$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhi1URNPCX0DmxmWDP3btzQUpigpFasWh5Wz5Y5Y47NrB3q3Iv8fbpAghIfVkefTMo5l5L9BZiAEQekfJkhIqPuyWtvfB-DiA3S4ZYU2pC9GKF2hBW7mqKJP0DC0IE21FCOfn6CLnHSGkZo18hc5rSoWQrVwgvb67v8UnlQ7e6h7ncXIHbOOw18mH73jcAl7_8vEWHO6nweiEH3y2EXqdR2-xKx88RrydBh2eiMei06N-jV52us_w5vReom-fru4319XN189fNuubytZcjFUNYHjb8aaTDXOkkyAcocQA50wzYWpmremASNM1rO6ElawxQFjNuJXESX6J3h-9-xR_TpBHNZQRoO91gDhlxZmQXMoVrQv69oROZgCn9skPOh3U01kKsDoCNsWcE3R_EErUHIHaqb8iUHME6hhB6d0ce6Es--AhqWw9BAvOJ7CjctE_y_LxH8tMzvH8gAPkXZxSKNdUVGWmiLqbo56TZg0plhUtgvX_Bc8c4jeQO8AF |
| Cites_doi | 10.3340/jkns.2009.45.3.169 10.1097/BRS.0b013e3181c4eb9a 10.1016/j.spinee.2018.05.023 10.21037/jss-22-36 10.1007/s00590-012-1166-x 10.1115/1.3426223 10.3389/fbioe.2023.1182265 10.26502/fjsrs0078 10.1115/1.4003536 10.5312/wjo.v11.i8.345 10.1007/s00586-010-1552-1 10.1115/1.3138639 10.1016/0021-9290(94)00140-Y 10.1007/s12541-013-0107-x 10.1177/039139880102400510 10.1097/BRS.0b013e3181ae23d1 10.1002/jsp2.1138 10.1115/1.3138348 10.1007/s00402-013-1905-4 10.1097/01.brs.0000170587.32676.0e 10.1016/S1935-9810(09)70007-6 10.1115/1.3426225 |
| ContentType | Journal Article |
| Copyright | 2025 Copyright © 2025. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.clinbiomech.2025.106686 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1879-1271 |
| EndPage | 106686 |
| ExternalDocumentID | 41166787 10_1016_j_clinbiomech_2025_106686 S0268003325002591 1_s2_0_S0268003325002591 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6PF 7-5 71M 8P~ 9DU 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ H~9 IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OH. OT. OVD OZT P-8 P-9 P2P PC. Q38 QZG R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UAP UPT WH7 WUQ Z5R ~G- ~HD AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c436t-4eeb38f35f752d0f7e6d010be332a26b42ccbfe07bf524f6c725be02423c70d73 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611906700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-0033 1879-1271 |
| IngestDate | Sat Nov 01 12:07:24 EDT 2025 Fri Nov 14 01:40:50 EST 2025 Thu Nov 27 00:41:05 EST 2025 Wed Dec 10 14:25:55 EST 2025 Sat Nov 29 12:11:04 EST 2025 Wed Dec 10 14:09:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spinal biomechanics Total disc replacement Stiffness In vitro testing Lumbar spine AxioMed® viscoelastic Total disc replacement |
| Language | English |
| License | Copyright © 2025. Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-4eeb38f35f752d0f7e6d010be332a26b42ccbfe07bf524f6c725be02423c70d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 41166787 |
| PQID | 3267377914 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3267377914 pubmed_primary_41166787 crossref_primary_10_1016_j_clinbiomech_2025_106686 elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2025_106686 elsevier_clinicalkeyesjournals_1_s2_0_S0268003325002591 elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2025_106686 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Clinical biomechanics (Bristol) |
| PublicationTitleAlternate | Clin Biomech (Bristol) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Edwards, Hayes, Posner, White, Mann (bb0035) 1987; 109 Costi, Ledet, O’Connell (bb0025) 2021; 4 Li, Sun, Chen, Tang, Chen, Wu (bb0100) 2020; 30 Benzel, Lieberman, Ross, Linovitz, Kuras, Zimmers (bb0005) 2011; 5 Lazennec, Rakover, Rousseau (bb0090) 2019; 19 Jung, Woo, Park, Jang, Han, Lee (bb0075) 2013; 14 Wilke, Schmidt, Richter, Schmoelz, Reichel, Cakir (bb0130) 2012; 21 Rao, Cao (bb0105) 2014; 134 F2346 AS (bb0050) 2005 Lazennec (bb0080) 2020; 11 Eijkelkamp, van Donkelaar, Veldhuizen, van Horn, Huyghe, Verkerke (bb0040) 2001; 24 Lazennec, Aaron, Brusson, Rakover, Rousseau (bb0085) 2013; 23 Ha, Kim, Kim, Park, Lim, Lee (bb0065) 2009; 45 White, Panjabi (bb0125) 1990 Demetropoulos, Sengupta, Knaub, Wiater, Abjornson, Truumees (bb0030) 2010; 35 Eskandar, Ahmed, Pan, Agrawal (bb0045) 2024; 6 Faulks, Biddau, Rossi, Brazenor, Malham (bb0060) 2022; 8 Hsieh, Tai, Li, Lee, Lin, Tsai (bb0070) 2023; 11 F2423 AS (bb0055) 2005 Schultz, Warwick, Berkson, Nachemson (bb0110) 1979; 101 Berkson, Nachemson, Schultz (bb0010) 1979; 101 Voronov, Havey, Rosler, Sjovold, Rogers, Carandang (bb0120) 2009; 3 Li, Patwardhan, Amirouche, Havey, Meade (bb0095) 1995; 28 Blumenthal, McAfee, Guyer, Hochschuler, Geisler, Holt (bb0015) 2005; 30 Chen, Park, Lee, Lee (bb0020) 2009; 34 Tencer, M, B (bb0115) 1982; 104 Eskandar (10.1016/j.clinbiomech.2025.106686_bb0045) 2024; 6 Benzel (10.1016/j.clinbiomech.2025.106686_bb0005) 2011; 5 Berkson (10.1016/j.clinbiomech.2025.106686_bb0010) 1979; 101 Costi (10.1016/j.clinbiomech.2025.106686_bb0025) 2021; 4 Schultz (10.1016/j.clinbiomech.2025.106686_bb0110) 1979; 101 F2346 AS (10.1016/j.clinbiomech.2025.106686_bb0050) 2005 Chen (10.1016/j.clinbiomech.2025.106686_bb0020) 2009; 34 Jung (10.1016/j.clinbiomech.2025.106686_bb0075) 2013; 14 Hsieh (10.1016/j.clinbiomech.2025.106686_bb0070) 2023; 11 Faulks (10.1016/j.clinbiomech.2025.106686_bb0060) 2022; 8 Rao (10.1016/j.clinbiomech.2025.106686_bb0105) 2014; 134 Edwards (10.1016/j.clinbiomech.2025.106686_bb0035) 1987; 109 Wilke (10.1016/j.clinbiomech.2025.106686_bb0130) 2012; 21 Blumenthal (10.1016/j.clinbiomech.2025.106686_bb0015) 2005; 30 Li (10.1016/j.clinbiomech.2025.106686_bb0095) 1995; 28 F2423 AS (10.1016/j.clinbiomech.2025.106686_bb0055) 2005 Lazennec (10.1016/j.clinbiomech.2025.106686_bb0085) 2013; 23 Tencer (10.1016/j.clinbiomech.2025.106686_bb0115) 1982; 104 Demetropoulos (10.1016/j.clinbiomech.2025.106686_bb0030) 2010; 35 Lazennec (10.1016/j.clinbiomech.2025.106686_bb0090) 2019; 19 Ha (10.1016/j.clinbiomech.2025.106686_bb0065) 2009; 45 Li (10.1016/j.clinbiomech.2025.106686_bb0100) 2020; 30 White (10.1016/j.clinbiomech.2025.106686_bb0125) 1990 Eijkelkamp (10.1016/j.clinbiomech.2025.106686_bb0040) 2001; 24 Voronov (10.1016/j.clinbiomech.2025.106686_bb0120) 2009; 3 Lazennec (10.1016/j.clinbiomech.2025.106686_bb0080) 2020; 11 |
| References_xml | – volume: 11 year: 2023 ident: bb0070 article-title: Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement publication-title: Front. Bioeng. Biotechnol. – volume: 21 start-page: S577 year: 2012 end-page: S584 ident: bb0130 article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior Centre of rotation publication-title: Eur. Spine J. – volume: 109 start-page: 35 year: 1987 end-page: 42 ident: bb0035 article-title: Variation of lumbar spine stiffness with load publication-title: J. Biomech. Eng. – volume: 5 year: 2011 ident: bb0005 article-title: Mechanical characterization of a viscoelastic disc for lumbar total disc replacement publication-title: J. Med. Devices – year: 2005 ident: bb0050 article-title: Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial Discs – volume: 8 start-page: 304 year: 2022 end-page: 313 ident: bb0060 article-title: Long-term outcomes following lumbar total disc replacement with M6-L publication-title: J. Spine Surg. – volume: 28 start-page: 779 year: 1995 end-page: 790 ident: bb0095 article-title: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression publication-title: J. Biomech. – volume: 3 start-page: 50 year: 2009 end-page: 58 ident: bb0120 article-title: L5 - s1 segmental kinematics after facet arthroplasty publication-title: SAS J. – volume: 14 start-page: 819 year: 2013 end-page: 824 ident: bb0075 article-title: Biomechanical behavior of two different cervical total disc replacement designs in relation of concavity of articular surfaces: ProDisc-C® vs. prestige-LP® publication-title: Int. J. Precis. Eng. Manuf. – volume: 24 start-page: 311 year: 2001 end-page: 321 ident: bb0040 article-title: Requirements for an artificial intervertebral disc publication-title: Int. J. Artif. Organs – volume: 6 start-page: 86 year: 2024 end-page: 92 ident: bb0045 article-title: The decline of lumbar artificial disc replacement publication-title: J. Spine Res. Surg. – year: 1990 ident: bb0125 article-title: Clinical Biomechanics of the Spine – volume: 4 year: 2021 ident: bb0025 article-title: Spine biomechanical testing methodologies: the controversy of consensus vs scientific evidence publication-title: JOR Spine – volume: 134 start-page: 149 year: 2014 end-page: 158 ident: bb0105 article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials publication-title: Arch. Orthop. Trauma Surg. – volume: 101 start-page: 53 year: 1979 end-page: 57 ident: bb0010 article-title: Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology publication-title: J. Biomech. Eng. – volume: 11 start-page: 345 year: 2020 end-page: 356 ident: bb0080 article-title: Lumbar and cervical viscoelastic disc replacement: concepts and current experience publication-title: World J. Orthop. – volume: 23 start-page: 131 year: 2013 end-page: 143 ident: bb0085 article-title: The LP-ESP((R)) lumbar disc prosthesis with 6 degrees of freedom: development and 7 years of clinical experience publication-title: Eur. J. Orthop. Surg. Traumatol. – volume: 34 start-page: E716 year: 2009 end-page: E723 ident: bb0020 article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement publication-title: Spine – volume: 45 start-page: 169 year: 2009 end-page: 175 ident: bb0065 article-title: Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine publication-title: J. Korean Neurosurg. Soc. – volume: 104 start-page: 193 year: 1982 end-page: 201 ident: bb0115 article-title: Some static mechanical properties of the lumbar intervertebral joint, intact and injured publication-title: J. Biomech. Eng. – year: 2005 ident: bb0055 article-title: Standard Guide for Functional, Kinematic, and Wear Assessment of Total Disc Prostheses – volume: 19 start-page: 218 year: 2019 end-page: 224 ident: bb0090 article-title: Five-year follow-up of clinical and radiological outcomes of LP-ESP elastomeric lumbar total disc replacement in active patients publication-title: Spine J. – volume: 30 start-page: 1 year: 2020 end-page: 10 ident: bb0100 article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: an update systematic review and meta-analysis publication-title: Turk. Neurosurg. – volume: 30 start-page: 1565 year: 2005 end-page: 1575 ident: bb0015 article-title: A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes publication-title: Spine – volume: 101 start-page: 46 year: 1979 end-page: 52 ident: bb0110 article-title: Mechanical properties of human lumbar spine motion segments—part I: responses in flexion, extension, lateral bending, and torsion publication-title: J. Biomech. Eng. – volume: 35 start-page: 26 year: 2010 end-page: 31 ident: bb0030 article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis publication-title: Spine – volume: 45 start-page: 169 issue: 3 year: 2009 ident: 10.1016/j.clinbiomech.2025.106686_bb0065 article-title: Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine publication-title: J. Korean Neurosurg. Soc. doi: 10.3340/jkns.2009.45.3.169 – volume: 35 start-page: 26 issue: 1 year: 2010 ident: 10.1016/j.clinbiomech.2025.106686_bb0030 article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis publication-title: Spine doi: 10.1097/BRS.0b013e3181c4eb9a – volume: 19 start-page: 218 issue: 2 year: 2019 ident: 10.1016/j.clinbiomech.2025.106686_bb0090 article-title: Five-year follow-up of clinical and radiological outcomes of LP-ESP elastomeric lumbar total disc replacement in active patients publication-title: Spine J. doi: 10.1016/j.spinee.2018.05.023 – volume: 8 start-page: 304 issue: 3 year: 2022 ident: 10.1016/j.clinbiomech.2025.106686_bb0060 article-title: Long-term outcomes following lumbar total disc replacement with M6-L publication-title: J. Spine Surg. doi: 10.21037/jss-22-36 – volume: 23 start-page: 131 issue: 2 year: 2013 ident: 10.1016/j.clinbiomech.2025.106686_bb0085 article-title: The LP-ESP((R)) lumbar disc prosthesis with 6 degrees of freedom: development and 7 years of clinical experience publication-title: Eur. J. Orthop. Surg. Traumatol. doi: 10.1007/s00590-012-1166-x – volume: 101 start-page: 46 issue: 1 year: 1979 ident: 10.1016/j.clinbiomech.2025.106686_bb0110 article-title: Mechanical properties of human lumbar spine motion segments—part I: responses in flexion, extension, lateral bending, and torsion publication-title: J. Biomech. Eng. doi: 10.1115/1.3426223 – volume: 11 year: 2023 ident: 10.1016/j.clinbiomech.2025.106686_bb0070 article-title: Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2023.1182265 – volume: 6 start-page: 86 issue: 3 year: 2024 ident: 10.1016/j.clinbiomech.2025.106686_bb0045 article-title: The decline of lumbar artificial disc replacement publication-title: J. Spine Res. Surg. doi: 10.26502/fjsrs0078 – volume: 5 issue: 1 year: 2011 ident: 10.1016/j.clinbiomech.2025.106686_bb0005 article-title: Mechanical characterization of a viscoelastic disc for lumbar total disc replacement publication-title: J. Med. Devices doi: 10.1115/1.4003536 – volume: 11 start-page: 345 issue: 8 year: 2020 ident: 10.1016/j.clinbiomech.2025.106686_bb0080 article-title: Lumbar and cervical viscoelastic disc replacement: concepts and current experience publication-title: World J. Orthop. doi: 10.5312/wjo.v11.i8.345 – volume: 21 start-page: S577 issue: Suppl. 5 year: 2012 ident: 10.1016/j.clinbiomech.2025.106686_bb0130 article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior Centre of rotation publication-title: Eur. Spine J. doi: 10.1007/s00586-010-1552-1 – volume: 109 start-page: 35 issue: 1 year: 1987 ident: 10.1016/j.clinbiomech.2025.106686_bb0035 article-title: Variation of lumbar spine stiffness with load publication-title: J. Biomech. Eng. doi: 10.1115/1.3138639 – year: 1990 ident: 10.1016/j.clinbiomech.2025.106686_bb0125 – volume: 28 start-page: 779 issue: 7 year: 1995 ident: 10.1016/j.clinbiomech.2025.106686_bb0095 article-title: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00140-Y – volume: 14 start-page: 819 issue: 5 year: 2013 ident: 10.1016/j.clinbiomech.2025.106686_bb0075 article-title: Biomechanical behavior of two different cervical total disc replacement designs in relation of concavity of articular surfaces: ProDisc-C® vs. prestige-LP® publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-013-0107-x – volume: 24 start-page: 311 issue: 5 year: 2001 ident: 10.1016/j.clinbiomech.2025.106686_bb0040 article-title: Requirements for an artificial intervertebral disc publication-title: Int. J. Artif. Organs doi: 10.1177/039139880102400510 – volume: 34 start-page: E716 issue: 20 year: 2009 ident: 10.1016/j.clinbiomech.2025.106686_bb0020 article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement publication-title: Spine doi: 10.1097/BRS.0b013e3181ae23d1 – volume: 30 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.clinbiomech.2025.106686_bb0100 article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: an update systematic review and meta-analysis publication-title: Turk. Neurosurg. – year: 2005 ident: 10.1016/j.clinbiomech.2025.106686_bb0050 – volume: 4 issue: 1 year: 2021 ident: 10.1016/j.clinbiomech.2025.106686_bb0025 article-title: Spine biomechanical testing methodologies: the controversy of consensus vs scientific evidence publication-title: JOR Spine doi: 10.1002/jsp2.1138 – year: 2005 ident: 10.1016/j.clinbiomech.2025.106686_bb0055 – volume: 104 start-page: 193 issue: 3 year: 1982 ident: 10.1016/j.clinbiomech.2025.106686_bb0115 article-title: Some static mechanical properties of the lumbar intervertebral joint, intact and injured publication-title: J. Biomech. Eng. doi: 10.1115/1.3138348 – volume: 134 start-page: 149 issue: 2 year: 2014 ident: 10.1016/j.clinbiomech.2025.106686_bb0105 article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-013-1905-4 – volume: 30 start-page: 1565 issue: 14 year: 2005 ident: 10.1016/j.clinbiomech.2025.106686_bb0015 article-title: A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes publication-title: Spine doi: 10.1097/01.brs.0000170587.32676.0e – volume: 3 start-page: 50 issue: 2 year: 2009 ident: 10.1016/j.clinbiomech.2025.106686_bb0120 article-title: L5 - s1 segmental kinematics after facet arthroplasty publication-title: SAS J. doi: 10.1016/S1935-9810(09)70007-6 – volume: 101 start-page: 53 issue: 1 year: 1979 ident: 10.1016/j.clinbiomech.2025.106686_bb0010 article-title: Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology publication-title: J. Biomech. Eng. doi: 10.1115/1.3426225 |
| SSID | ssj0004257 |
| Score | 2.46469 |
| Snippet | Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy... AbstractBackgroundArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 106686 |
| SubjectTerms | AxioMed® viscoelastic Total disc replacement Biomechanical Phenomena Compressive Strength Elastic Modulus Elasticity Humans In vitro testing Intervertebral Disc - physiology Intervertebral Disc - surgery Lumbar spine Lumbar Vertebrae - physiology Lumbar Vertebrae - surgery Physical Medicine and Rehabilitation Prostheses and Implants Range of Motion, Articular Spinal biomechanics Stiffness Stress, Mechanical Total disc replacement Total Disc Replacement - methods Viscosity Weight-Bearing |
| Title | ASTM biomechanical study comparing the AxioMed lumbar viscoelastic disc to human lumbar disc data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0268003325002591 https://www.clinicalkey.es/playcontent/1-s2.0-S0268003325002591 https://dx.doi.org/10.1016/j.clinbiomech.2025.106686 https://www.ncbi.nlm.nih.gov/pubmed/41166787 https://www.proquest.com/docview/3267377914 |
| Volume | 130 |
| WOSCitedRecordID | wos001611906700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhyZeEGwwysfkSYiXKVXiJnGKeCkwBIhNaC1S36zEcaSNkUxNV5VX_nLu_JF0G5WKEC9p5fgj8f1yPtv3OxPycijBSvB95YXoVhPKXHrDMFMeDI0w-GWxCnIdXf8LPzlJptPh107nl-PCLC54WSbL5fDyv4oa0kDYSJ39C3E3lUIC_AehwxXEDteNBD8aT44PNaseSb2G9agjRxt3c0ePGi3N8i4opyydHS7OalkpMKUxgCtSddEoNQf42Rw60VLZ2uAGjli50qBex32rYxZcrCw04EndWq3g2jyqotN-ewtm5tApxk3oO-inZrAYW2V0WiE9-X1bJJ25OJOWjObqs0sYLLrhDtJwa1pHplqHhE08PGrumq42mzi39L5ZgjjvI53UvnAfW4I7cXwz1rYevcdYP1YPNiBkxAAIW4zDb5dsjT4dTT-37FobL9Y9zzY5aL0E1zS4zspZN4vR1szkAblvpyF0ZODzkHRUuUN2R2U6r378pK-odgzWOy47ZPvY-l_skhTBRa-Bi2pw0QZcFMBFLbiogQ5dBRdFHNF5RTW4XA6diOB6RL59OJq8--jZQzo8GQ7iuRcqlQ2SYhAVPGK5X3AV5zDHzxT0bMriLGRSZoXyeVZELCxiyVmUKbQMB5L7OR88Jt2yKtUTQpXE2TVTrEijcJhHqZ8mMS9UGsgs99OwR5jrVHFpYrEI56R4LlYkIVASwkiiR1677heObAzDowDkbFKY_6mwqu33XotA1Ez44haaeuRNU9LassZG3bThA4cUAfoeN_HSUlVXtYDpFscgoQF0x56BUNMZYRDEYHzyp__yzs_IvfYbfU6689mVekHuysX8rJ7tkzt8muzbT-Q3P6Pfhg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASTM+biomechanical+study+comparing+the+AxioMed+lumbar+viscoelastic+disc+to+human+lumbar+disc+data&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Chin%2C+Kingsley+R.&rft.au=Chebrolu%2C+Sukanya&rft.au=Sung%2C+Roger+D.&rft.au=Carlson%2C+Jeffrey+R.&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0268-0033&rft.volume=130&rft_id=info:doi/10.1016%2Fj.clinbiomech.2025.106686&rft.externalDocID=S0268003325002591 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02680033%2FS0268003325X00097%2Fcov150h.gif |