ASTM biomechanical study comparing the AxioMed lumbar viscoelastic disc to human lumbar disc data

Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Clinical biomechanics (Bristol) Ročník 130; s. 106686
Hlavní autori: Chin, Kingsley R., Chebrolu, Sukanya, Sung, Roger D., Carlson, Jeffrey R., McFarland, Mark W., Spayde, Erik, Costigan, William M., Thompson, Sandra, Lore, Vito, Zimmers, Kari B., Estevez, Hope, Pangarkar, Swapnil, Humad, Aditya, Ilogu, Chukwunonso C., Seale, Jason A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.12.2025
Predmet:
ISSN:0268-0033, 1879-1271, 1879-1271
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion. •Viscoelastic disc replacement mimics native lumbar stiffness across multiple modes.•Axial, flexion-extension and shear stiffness matched published disc values.•Rotation stiffness lower than native, leading to greater segmental mobility.•Static compression sustained 20,000 N without mechanical or functional failure.•First in vitro stiffness study of viscoelastic disc vs. human lumbar disc data.
AbstractList Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion. •Viscoelastic disc replacement mimics native lumbar stiffness across multiple modes.•Axial, flexion-extension and shear stiffness matched published disc values.•Rotation stiffness lower than native, leading to greater segmental mobility.•Static compression sustained 20,000 N without mechanical or functional failure.•First in vitro stiffness study of viscoelastic disc vs. human lumbar disc data.
Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.BACKGROUNDArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions.Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.METHODSTen AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc.Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.FINDINGSAxial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure.These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.INTERPRETATIONThese findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.
AbstractBackgroundArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. MethodsTen AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. FindingsAxial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69–2.14 Nm/deg) matched the physiologic range (0.8–2.5 Nm/deg). Rotation stiffness (0.79–0.83 Nm/deg) was lower than native values (2.0–9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49–0.59 kN/mm) fell within the native lumbar disc range (0.4–0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. InterpretationThese findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.
Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy human lumbar disc. Existing ball-and-socket designs often permit excessive motion and fail to provide the nonlinear, load-dependent stiffness that characterize native spinal biomechanics. To date, no in vitro study has directly compared the stiffness of a viscoelastic total disc replacement (VTDR) to that of the natural lumbar disc under physiologic conditions. Ten AxioMed® lumbar VTDRs were tested using standardized ASTM protocols in a physiologic environment (PBS at 37 ± 3 °C). Axial compression, flexion-extension, axial rotation and compressive shear stiffness were measured using servohydraulic test systems. An additional five implants underwent static axial loading up to 20,000 N. All values were compared to published stiffness ranges for the healthy human lumbar disc. Axial stiffness ranged from 2.56 to 3.48 kN/mm, overlapping the reported native range of 0.5 to 2.5 kN/mm. Flexion-extension stiffness (1.69-2.14 Nm/deg) matched the physiologic range (0.8-2.5 Nm/deg). Rotation stiffness (0.79-0.83 Nm/deg) was lower than native values (2.0-9.6 Nm/deg), resulting in greater rotational mobility. Compressive shear stiffness (0.49-0.59 kN/mm) fell within the native lumbar disc range (0.4-0.7 kN/mm). All implants withstood static compression to 20,000 N without structural failure. These findings show that the AxioMed® VTDR reproduces lumbar disc stiffness more closely than prior designs. The ability to replicate both compliant and stiff loading zones suggests improved biomechanical performance and segmental stability, supporting its use as a potential alternative to spinal fusion.
ArticleNumber 106686
Author Costigan, William M.
Chin, Kingsley R.
Chebrolu, Sukanya
McFarland, Mark W.
Sung, Roger D.
Thompson, Sandra
Ilogu, Chukwunonso C.
Seale, Jason A.
Lore, Vito
Spayde, Erik
Carlson, Jeffrey R.
Estevez, Hope
Zimmers, Kari B.
Pangarkar, Swapnil
Humad, Aditya
Author_xml – sequence: 1
  givenname: Kingsley R.
  surname: Chin
  fullname: Chin, Kingsley R.
  email: kingsleychin@thelessinstitute.com
  organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA
– sequence: 2
  givenname: Sukanya
  surname: Chebrolu
  fullname: Chebrolu, Sukanya
  organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA
– sequence: 3
  givenname: Roger D.
  surname: Sung
  fullname: Sung, Roger D.
  organization: Colorado Springs Orthopaedic Group, Colorado Springs, CO, USA
– sequence: 4
  givenname: Jeffrey R.
  surname: Carlson
  fullname: Carlson, Jeffrey R.
  organization: Orthopaedic and Spine Center, Newport News, VA, USA
– sequence: 5
  givenname: Mark W.
  surname: McFarland
  fullname: McFarland, Mark W.
  organization: Orthopaedic and Spine Center, Newport News, VA, USA
– sequence: 6
  givenname: Erik
  surname: Spayde
  fullname: Spayde, Erik
  organization: St. Charles Spine Institute, Thousand Oaks, CA, USA
– sequence: 7
  givenname: William M.
  surname: Costigan
  fullname: Costigan, William M.
  organization: Congress Orthopaedic Associates, Pasadena, CA, USA
– sequence: 8
  givenname: Sandra
  surname: Thompson
  fullname: Thompson, Sandra
  organization: The Pain Center, Boise, ID, USA
– sequence: 9
  givenname: Vito
  surname: Lore
  fullname: Lore, Vito
  organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA
– sequence: 10
  givenname: Kari B.
  surname: Zimmers
  fullname: Zimmers, Kari B.
  organization: AxioMed LLC, Burlington, MA, USA
– sequence: 11
  givenname: Hope
  surname: Estevez
  fullname: Estevez, Hope
  organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA
– sequence: 12
  givenname: Swapnil
  surname: Pangarkar
  fullname: Pangarkar, Swapnil
  organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA
– sequence: 13
  givenname: Aditya
  surname: Humad
  fullname: Humad, Aditya
  organization: Less Exposure Spine Surgery (LESS) Society 501©, Fort Lauderdale, Florida, USA
– sequence: 14
  givenname: Chukwunonso C.
  surname: Ilogu
  fullname: Ilogu, Chukwunonso C.
  organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA
– sequence: 15
  givenname: Jason A.
  surname: Seale
  fullname: Seale, Jason A.
  organization: Less Exposure Spine Surgery Institute (LESS Institute aka LESS Clinic), Fort Lauderdale, Florida, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41166787$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URNPCX0DmxmWDP3btzQUpigpFasWh5Wz5Y5Y47NrB3q3Iv8fbpAghIfVkefTMo5l5L9BZiAEQekfJkhIqPuyWtvfB-DiA3S4ZYU2pC9GKF2hBW7mqKJP0DC0IE21FCOfn6CLnHSGkZo18hc5rSoWQrVwgvb67v8UnlQ7e6h7ncXIHbOOw18mH73jcAl7_8vEWHO6nweiEH3y2EXqdR2-xKx88RrydBh2eiMei06N-jV52us_w5vReom-fru4319XN189fNuubytZcjFUNYHjb8aaTDXOkkyAcocQA50wzYWpmremASNM1rO6ElawxQFjNuJXESX6J3h-9-xR_TpBHNZQRoO91gDhlxZmQXMoVrQv69oROZgCn9skPOh3U01kKsDoCNsWcE3R_EErUHIHaqb8iUHME6hhB6d0ce6Es--AhqWw9BAvOJ7CjctE_y_LxH8tMzvH8gAPkXZxSKNdUVGWmiLqbo56TZg0plhUtgvX_Bc8c4jeQO8AF
Cites_doi 10.3340/jkns.2009.45.3.169
10.1097/BRS.0b013e3181c4eb9a
10.1016/j.spinee.2018.05.023
10.21037/jss-22-36
10.1007/s00590-012-1166-x
10.1115/1.3426223
10.3389/fbioe.2023.1182265
10.26502/fjsrs0078
10.1115/1.4003536
10.5312/wjo.v11.i8.345
10.1007/s00586-010-1552-1
10.1115/1.3138639
10.1016/0021-9290(94)00140-Y
10.1007/s12541-013-0107-x
10.1177/039139880102400510
10.1097/BRS.0b013e3181ae23d1
10.1002/jsp2.1138
10.1115/1.3138348
10.1007/s00402-013-1905-4
10.1097/01.brs.0000170587.32676.0e
10.1016/S1935-9810(09)70007-6
10.1115/1.3426225
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinbiomech.2025.106686
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 106686
ExternalDocumentID 41166787
10_1016_j_clinbiomech_2025_106686
S0268003325002591
1_s2_0_S0268003325002591
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9DU
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
~HD
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c436t-4eeb38f35f752d0f7e6d010be332a26b42ccbfe07bf524f6c725be02423c70d73
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611906700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-0033
1879-1271
IngestDate Sat Nov 01 12:07:24 EDT 2025
Fri Nov 14 01:40:50 EST 2025
Thu Nov 27 00:41:05 EST 2025
Wed Dec 10 14:25:55 EST 2025
Sat Nov 29 12:11:04 EST 2025
Wed Dec 10 14:09:23 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Spinal biomechanics
Total disc replacement
Stiffness
In vitro testing
Lumbar spine
AxioMed® viscoelastic Total disc replacement
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-4eeb38f35f752d0f7e6d010be332a26b42ccbfe07bf524f6c725be02423c70d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 41166787
PQID 3267377914
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3267377914
pubmed_primary_41166787
crossref_primary_10_1016_j_clinbiomech_2025_106686
elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2025_106686
elsevier_clinicalkeyesjournals_1_s2_0_S0268003325002591
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2025_106686
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Edwards, Hayes, Posner, White, Mann (bb0035) 1987; 109
Costi, Ledet, O’Connell (bb0025) 2021; 4
Li, Sun, Chen, Tang, Chen, Wu (bb0100) 2020; 30
Benzel, Lieberman, Ross, Linovitz, Kuras, Zimmers (bb0005) 2011; 5
Lazennec, Rakover, Rousseau (bb0090) 2019; 19
Jung, Woo, Park, Jang, Han, Lee (bb0075) 2013; 14
Wilke, Schmidt, Richter, Schmoelz, Reichel, Cakir (bb0130) 2012; 21
Rao, Cao (bb0105) 2014; 134
F2346 AS (bb0050) 2005
Lazennec (bb0080) 2020; 11
Eijkelkamp, van Donkelaar, Veldhuizen, van Horn, Huyghe, Verkerke (bb0040) 2001; 24
Lazennec, Aaron, Brusson, Rakover, Rousseau (bb0085) 2013; 23
Ha, Kim, Kim, Park, Lim, Lee (bb0065) 2009; 45
White, Panjabi (bb0125) 1990
Demetropoulos, Sengupta, Knaub, Wiater, Abjornson, Truumees (bb0030) 2010; 35
Eskandar, Ahmed, Pan, Agrawal (bb0045) 2024; 6
Faulks, Biddau, Rossi, Brazenor, Malham (bb0060) 2022; 8
Hsieh, Tai, Li, Lee, Lin, Tsai (bb0070) 2023; 11
F2423 AS (bb0055) 2005
Schultz, Warwick, Berkson, Nachemson (bb0110) 1979; 101
Berkson, Nachemson, Schultz (bb0010) 1979; 101
Voronov, Havey, Rosler, Sjovold, Rogers, Carandang (bb0120) 2009; 3
Li, Patwardhan, Amirouche, Havey, Meade (bb0095) 1995; 28
Blumenthal, McAfee, Guyer, Hochschuler, Geisler, Holt (bb0015) 2005; 30
Chen, Park, Lee, Lee (bb0020) 2009; 34
Tencer, M, B (bb0115) 1982; 104
Eskandar (10.1016/j.clinbiomech.2025.106686_bb0045) 2024; 6
Benzel (10.1016/j.clinbiomech.2025.106686_bb0005) 2011; 5
Berkson (10.1016/j.clinbiomech.2025.106686_bb0010) 1979; 101
Costi (10.1016/j.clinbiomech.2025.106686_bb0025) 2021; 4
Schultz (10.1016/j.clinbiomech.2025.106686_bb0110) 1979; 101
F2346 AS (10.1016/j.clinbiomech.2025.106686_bb0050) 2005
Chen (10.1016/j.clinbiomech.2025.106686_bb0020) 2009; 34
Jung (10.1016/j.clinbiomech.2025.106686_bb0075) 2013; 14
Hsieh (10.1016/j.clinbiomech.2025.106686_bb0070) 2023; 11
Faulks (10.1016/j.clinbiomech.2025.106686_bb0060) 2022; 8
Rao (10.1016/j.clinbiomech.2025.106686_bb0105) 2014; 134
Edwards (10.1016/j.clinbiomech.2025.106686_bb0035) 1987; 109
Wilke (10.1016/j.clinbiomech.2025.106686_bb0130) 2012; 21
Blumenthal (10.1016/j.clinbiomech.2025.106686_bb0015) 2005; 30
Li (10.1016/j.clinbiomech.2025.106686_bb0095) 1995; 28
F2423 AS (10.1016/j.clinbiomech.2025.106686_bb0055) 2005
Lazennec (10.1016/j.clinbiomech.2025.106686_bb0085) 2013; 23
Tencer (10.1016/j.clinbiomech.2025.106686_bb0115) 1982; 104
Demetropoulos (10.1016/j.clinbiomech.2025.106686_bb0030) 2010; 35
Lazennec (10.1016/j.clinbiomech.2025.106686_bb0090) 2019; 19
Ha (10.1016/j.clinbiomech.2025.106686_bb0065) 2009; 45
Li (10.1016/j.clinbiomech.2025.106686_bb0100) 2020; 30
White (10.1016/j.clinbiomech.2025.106686_bb0125) 1990
Eijkelkamp (10.1016/j.clinbiomech.2025.106686_bb0040) 2001; 24
Voronov (10.1016/j.clinbiomech.2025.106686_bb0120) 2009; 3
Lazennec (10.1016/j.clinbiomech.2025.106686_bb0080) 2020; 11
References_xml – volume: 11
  year: 2023
  ident: bb0070
  article-title: Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement
  publication-title: Front. Bioeng. Biotechnol.
– volume: 21
  start-page: S577
  year: 2012
  end-page: S584
  ident: bb0130
  article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior Centre of rotation
  publication-title: Eur. Spine J.
– volume: 109
  start-page: 35
  year: 1987
  end-page: 42
  ident: bb0035
  article-title: Variation of lumbar spine stiffness with load
  publication-title: J. Biomech. Eng.
– volume: 5
  year: 2011
  ident: bb0005
  article-title: Mechanical characterization of a viscoelastic disc for lumbar total disc replacement
  publication-title: J. Med. Devices
– year: 2005
  ident: bb0050
  article-title: Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial Discs
– volume: 8
  start-page: 304
  year: 2022
  end-page: 313
  ident: bb0060
  article-title: Long-term outcomes following lumbar total disc replacement with M6-L
  publication-title: J. Spine Surg.
– volume: 28
  start-page: 779
  year: 1995
  end-page: 790
  ident: bb0095
  article-title: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression
  publication-title: J. Biomech.
– volume: 3
  start-page: 50
  year: 2009
  end-page: 58
  ident: bb0120
  article-title: L5 - s1 segmental kinematics after facet arthroplasty
  publication-title: SAS J.
– volume: 14
  start-page: 819
  year: 2013
  end-page: 824
  ident: bb0075
  article-title: Biomechanical behavior of two different cervical total disc replacement designs in relation of concavity of articular surfaces: ProDisc-C® vs. prestige-LP®
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 24
  start-page: 311
  year: 2001
  end-page: 321
  ident: bb0040
  article-title: Requirements for an artificial intervertebral disc
  publication-title: Int. J. Artif. Organs
– volume: 6
  start-page: 86
  year: 2024
  end-page: 92
  ident: bb0045
  article-title: The decline of lumbar artificial disc replacement
  publication-title: J. Spine Res. Surg.
– year: 1990
  ident: bb0125
  article-title: Clinical Biomechanics of the Spine
– volume: 4
  year: 2021
  ident: bb0025
  article-title: Spine biomechanical testing methodologies: the controversy of consensus vs scientific evidence
  publication-title: JOR Spine
– volume: 134
  start-page: 149
  year: 2014
  end-page: 158
  ident: bb0105
  article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials
  publication-title: Arch. Orthop. Trauma Surg.
– volume: 101
  start-page: 53
  year: 1979
  end-page: 57
  ident: bb0010
  article-title: Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology
  publication-title: J. Biomech. Eng.
– volume: 11
  start-page: 345
  year: 2020
  end-page: 356
  ident: bb0080
  article-title: Lumbar and cervical viscoelastic disc replacement: concepts and current experience
  publication-title: World J. Orthop.
– volume: 23
  start-page: 131
  year: 2013
  end-page: 143
  ident: bb0085
  article-title: The LP-ESP((R)) lumbar disc prosthesis with 6 degrees of freedom: development and 7 years of clinical experience
  publication-title: Eur. J. Orthop. Surg. Traumatol.
– volume: 34
  start-page: E716
  year: 2009
  end-page: E723
  ident: bb0020
  article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement
  publication-title: Spine
– volume: 45
  start-page: 169
  year: 2009
  end-page: 175
  ident: bb0065
  article-title: Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine
  publication-title: J. Korean Neurosurg. Soc.
– volume: 104
  start-page: 193
  year: 1982
  end-page: 201
  ident: bb0115
  article-title: Some static mechanical properties of the lumbar intervertebral joint, intact and injured
  publication-title: J. Biomech. Eng.
– year: 2005
  ident: bb0055
  article-title: Standard Guide for Functional, Kinematic, and Wear Assessment of Total Disc Prostheses
– volume: 19
  start-page: 218
  year: 2019
  end-page: 224
  ident: bb0090
  article-title: Five-year follow-up of clinical and radiological outcomes of LP-ESP elastomeric lumbar total disc replacement in active patients
  publication-title: Spine J.
– volume: 30
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0100
  article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: an update systematic review and meta-analysis
  publication-title: Turk. Neurosurg.
– volume: 30
  start-page: 1565
  year: 2005
  end-page: 1575
  ident: bb0015
  article-title: A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes
  publication-title: Spine
– volume: 101
  start-page: 46
  year: 1979
  end-page: 52
  ident: bb0110
  article-title: Mechanical properties of human lumbar spine motion segments—part I: responses in flexion, extension, lateral bending, and torsion
  publication-title: J. Biomech. Eng.
– volume: 35
  start-page: 26
  year: 2010
  end-page: 31
  ident: bb0030
  article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis
  publication-title: Spine
– volume: 45
  start-page: 169
  issue: 3
  year: 2009
  ident: 10.1016/j.clinbiomech.2025.106686_bb0065
  article-title: Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine
  publication-title: J. Korean Neurosurg. Soc.
  doi: 10.3340/jkns.2009.45.3.169
– volume: 35
  start-page: 26
  issue: 1
  year: 2010
  ident: 10.1016/j.clinbiomech.2025.106686_bb0030
  article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181c4eb9a
– volume: 19
  start-page: 218
  issue: 2
  year: 2019
  ident: 10.1016/j.clinbiomech.2025.106686_bb0090
  article-title: Five-year follow-up of clinical and radiological outcomes of LP-ESP elastomeric lumbar total disc replacement in active patients
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2018.05.023
– volume: 8
  start-page: 304
  issue: 3
  year: 2022
  ident: 10.1016/j.clinbiomech.2025.106686_bb0060
  article-title: Long-term outcomes following lumbar total disc replacement with M6-L
  publication-title: J. Spine Surg.
  doi: 10.21037/jss-22-36
– volume: 23
  start-page: 131
  issue: 2
  year: 2013
  ident: 10.1016/j.clinbiomech.2025.106686_bb0085
  article-title: The LP-ESP((R)) lumbar disc prosthesis with 6 degrees of freedom: development and 7 years of clinical experience
  publication-title: Eur. J. Orthop. Surg. Traumatol.
  doi: 10.1007/s00590-012-1166-x
– volume: 101
  start-page: 46
  issue: 1
  year: 1979
  ident: 10.1016/j.clinbiomech.2025.106686_bb0110
  article-title: Mechanical properties of human lumbar spine motion segments—part I: responses in flexion, extension, lateral bending, and torsion
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426223
– volume: 11
  year: 2023
  ident: 10.1016/j.clinbiomech.2025.106686_bb0070
  article-title: Finite element analysis of optimized novel additively manufactured non-articulating prostheses for cervical total disc replacement
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1182265
– volume: 6
  start-page: 86
  issue: 3
  year: 2024
  ident: 10.1016/j.clinbiomech.2025.106686_bb0045
  article-title: The decline of lumbar artificial disc replacement
  publication-title: J. Spine Res. Surg.
  doi: 10.26502/fjsrs0078
– volume: 5
  issue: 1
  year: 2011
  ident: 10.1016/j.clinbiomech.2025.106686_bb0005
  article-title: Mechanical characterization of a viscoelastic disc for lumbar total disc replacement
  publication-title: J. Med. Devices
  doi: 10.1115/1.4003536
– volume: 11
  start-page: 345
  issue: 8
  year: 2020
  ident: 10.1016/j.clinbiomech.2025.106686_bb0080
  article-title: Lumbar and cervical viscoelastic disc replacement: concepts and current experience
  publication-title: World J. Orthop.
  doi: 10.5312/wjo.v11.i8.345
– volume: 21
  start-page: S577
  issue: Suppl. 5
  year: 2012
  ident: 10.1016/j.clinbiomech.2025.106686_bb0130
  article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior Centre of rotation
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-010-1552-1
– volume: 109
  start-page: 35
  issue: 1
  year: 1987
  ident: 10.1016/j.clinbiomech.2025.106686_bb0035
  article-title: Variation of lumbar spine stiffness with load
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138639
– year: 1990
  ident: 10.1016/j.clinbiomech.2025.106686_bb0125
– volume: 28
  start-page: 779
  issue: 7
  year: 1995
  ident: 10.1016/j.clinbiomech.2025.106686_bb0095
  article-title: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00140-Y
– volume: 14
  start-page: 819
  issue: 5
  year: 2013
  ident: 10.1016/j.clinbiomech.2025.106686_bb0075
  article-title: Biomechanical behavior of two different cervical total disc replacement designs in relation of concavity of articular surfaces: ProDisc-C® vs. prestige-LP®
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-013-0107-x
– volume: 24
  start-page: 311
  issue: 5
  year: 2001
  ident: 10.1016/j.clinbiomech.2025.106686_bb0040
  article-title: Requirements for an artificial intervertebral disc
  publication-title: Int. J. Artif. Organs
  doi: 10.1177/039139880102400510
– volume: 34
  start-page: E716
  issue: 20
  year: 2009
  ident: 10.1016/j.clinbiomech.2025.106686_bb0020
  article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181ae23d1
– volume: 30
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.clinbiomech.2025.106686_bb0100
  article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: an update systematic review and meta-analysis
  publication-title: Turk. Neurosurg.
– year: 2005
  ident: 10.1016/j.clinbiomech.2025.106686_bb0050
– volume: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.clinbiomech.2025.106686_bb0025
  article-title: Spine biomechanical testing methodologies: the controversy of consensus vs scientific evidence
  publication-title: JOR Spine
  doi: 10.1002/jsp2.1138
– year: 2005
  ident: 10.1016/j.clinbiomech.2025.106686_bb0055
– volume: 104
  start-page: 193
  issue: 3
  year: 1982
  ident: 10.1016/j.clinbiomech.2025.106686_bb0115
  article-title: Some static mechanical properties of the lumbar intervertebral joint, intact and injured
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138348
– volume: 134
  start-page: 149
  issue: 2
  year: 2014
  ident: 10.1016/j.clinbiomech.2025.106686_bb0105
  article-title: Artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials
  publication-title: Arch. Orthop. Trauma Surg.
  doi: 10.1007/s00402-013-1905-4
– volume: 30
  start-page: 1565
  issue: 14
  year: 2005
  ident: 10.1016/j.clinbiomech.2025.106686_bb0015
  article-title: A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes
  publication-title: Spine
  doi: 10.1097/01.brs.0000170587.32676.0e
– volume: 3
  start-page: 50
  issue: 2
  year: 2009
  ident: 10.1016/j.clinbiomech.2025.106686_bb0120
  article-title: L5 - s1 segmental kinematics after facet arthroplasty
  publication-title: SAS J.
  doi: 10.1016/S1935-9810(09)70007-6
– volume: 101
  start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.clinbiomech.2025.106686_bb0010
  article-title: Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3426225
SSID ssj0004257
Score 2.46469
Snippet Artificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural stiffness of the healthy...
AbstractBackgroundArtificial disc replacements aim to preserve motion in patients with lumbar disc degeneration, but most do not replicate the natural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106686
SubjectTerms AxioMed® viscoelastic Total disc replacement
Biomechanical Phenomena
Compressive Strength
Elastic Modulus
Elasticity
Humans
In vitro testing
Intervertebral Disc - physiology
Intervertebral Disc - surgery
Lumbar spine
Lumbar Vertebrae - physiology
Lumbar Vertebrae - surgery
Physical Medicine and Rehabilitation
Prostheses and Implants
Range of Motion, Articular
Spinal biomechanics
Stiffness
Stress, Mechanical
Total disc replacement
Total Disc Replacement - methods
Viscosity
Weight-Bearing
Title ASTM biomechanical study comparing the AxioMed lumbar viscoelastic disc to human lumbar disc data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0268003325002591
https://www.clinicalkey.es/playcontent/1-s2.0-S0268003325002591
https://dx.doi.org/10.1016/j.clinbiomech.2025.106686
https://www.ncbi.nlm.nih.gov/pubmed/41166787
https://www.proquest.com/docview/3267377914
Volume 130
WOSCitedRecordID wos001611906700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004257
  issn: 0268-0033
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhyZeEGwwysfkSYiXKVXiJnGKeCkwBIhNaC1S36zEcaSNkUxNV5VX_nLu_JF0G5WKEC9p5fgj8f1yPtv3OxPycijBSvB95YXoVhPKXHrDMFMeDI0w-GWxCnIdXf8LPzlJptPh107nl-PCLC54WSbL5fDyv4oa0kDYSJ39C3E3lUIC_AehwxXEDteNBD8aT44PNaseSb2G9agjRxt3c0ePGi3N8i4opyydHS7OalkpMKUxgCtSddEoNQf42Rw60VLZ2uAGjli50qBex32rYxZcrCw04EndWq3g2jyqotN-ewtm5tApxk3oO-inZrAYW2V0WiE9-X1bJJ25OJOWjObqs0sYLLrhDtJwa1pHplqHhE08PGrumq42mzi39L5ZgjjvI53UvnAfW4I7cXwz1rYevcdYP1YPNiBkxAAIW4zDb5dsjT4dTT-37FobL9Y9zzY5aL0E1zS4zspZN4vR1szkAblvpyF0ZODzkHRUuUN2R2U6r378pK-odgzWOy47ZPvY-l_skhTBRa-Bi2pw0QZcFMBFLbiogQ5dBRdFHNF5RTW4XA6diOB6RL59OJq8--jZQzo8GQ7iuRcqlQ2SYhAVPGK5X3AV5zDHzxT0bMriLGRSZoXyeVZELCxiyVmUKbQMB5L7OR88Jt2yKtUTQpXE2TVTrEijcJhHqZ8mMS9UGsgs99OwR5jrVHFpYrEI56R4LlYkIVASwkiiR1677heObAzDowDkbFKY_6mwqu33XotA1Ez44haaeuRNU9LassZG3bThA4cUAfoeN_HSUlVXtYDpFscgoQF0x56BUNMZYRDEYHzyp__yzs_IvfYbfU6689mVekHuysX8rJ7tkzt8muzbT-Q3P6Pfhg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASTM+biomechanical+study+comparing+the+AxioMed+lumbar+viscoelastic+disc+to+human+lumbar+disc+data&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Chin%2C+Kingsley+R.&rft.au=Chebrolu%2C+Sukanya&rft.au=Sung%2C+Roger+D.&rft.au=Carlson%2C+Jeffrey+R.&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0268-0033&rft.volume=130&rft_id=info:doi/10.1016%2Fj.clinbiomech.2025.106686&rft.externalDocID=S0268003325002591
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02680033%2FS0268003325X00097%2Fcov150h.gif