A multiplicative Schwarz method with active subdomains for transient convection-diffusion problems

An efficient algorithm to find the solution of transient convection–diffusion problems with dominant convection is presented. The main idea is to follow the solution front and activate those subdomains where the solution satisfies a given threshold value. We call this novel method ‘the multiplicativ...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in biomedical engineering Vol. 26; no. 12; pp. 1573 - 1585
Main Authors: Sandoval, M. L., Rodríguez-Ferran, A.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.12.2010
Wiley
Subjects:
ISSN:2040-7939, 2040-7947, 2040-7947
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An efficient algorithm to find the solution of transient convection–diffusion problems with dominant convection is presented. The main idea is to follow the solution front and activate those subdomains where the solution satisfies a given threshold value. We call this novel method ‘the multiplicative Schwarz method with active subdomains’, and it is motivated by the solution of a problem from activated‐carbon filters used in the automotive industry to reduce emissions. Numerical experiments show that this method is more efficient than the preconditioned conjugate gradient method with an incomplete Cholesky factorization. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList An efficient algorithm to find the solution of transient convection–diffusion problems with dominant convection is presented. The main idea is to follow the solution front and activate those subdomains where the solution satisfies a given threshold value. We call this novel method ‘the multiplicative Schwarz method with active subdomains’, and it is motivated by the solution of a problem from activated‐carbon filters used in the automotive industry to reduce emissions. Numerical experiments show that this method is more efficient than the preconditioned conjugate gradient method with an incomplete Cholesky factorization. Copyright © 2009 John Wiley & Sons, Ltd.
An efficient algorithm to find the solution of transient convection-diffusion problems with dominant convection is presented. The main idea is to follow the solution front and activate those subdomains where the solution satisfies a given threshold value. We call this novel method 'the multiplicative Schwarz method with active subdomains', and it is motivated by the solution of a problem from activated-carbon filters used in the automotive industry to reduce emissions. Numerical experiments show that this method is more efficient than the preconditioned conjugate gradient method with an incomplete Cholesky factorization.
Author Sandoval, M. L.
Rodríguez-Ferran, A.
Author_xml – sequence: 1
  givenname: M. L.
  surname: Sandoval
  fullname: Sandoval, M. L.
  email: mlss@xanum.uam.mx
  organization: Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco #186, Col. Vicentina 09340 México, D.F
– sequence: 2
  givenname: A.
  surname: Rodríguez-Ferran
  fullname: Rodríguez-Ferran, A.
  organization: Laboratori de Càlcul Numèric (LaCàN), Departament de Matemàtica Aplicada III, E.T.S. d'Enginyers de Camins, Universitat Politècnica de Catalunya, Barcelona, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23668602$$DView record in Pascal Francis
BookMark eNqF0Utv1DAQB3ALFYlSKvERfEHikuJH1o6P1Yptoa9DQT1aE2esNSTOYidd2k9f96EVHBBz8Uj-aUaj_1uyF8eIhLzn7IgzJj65OBxxIc0rsi9YzSptar2366V5Qw5z_sFKCWOMlvukPabD3E9h0wcHU7hFeu3WW0j3dMBpPXZ0G6Y1Bff0lee2GwcIMVM_JjoliDlgnKgb4y0WM8aqC97PuXR0k8a2xyG_I6899BkPX94D8n31-dvytDq_OvmyPD6vXC2VqUC3nNdi0XrkyFjjdOsQahSAwoHpFMquUd5xYLDo2o5JL5jmUHeKN155eUA-Ps8ti3_NmCc7hOyw7yHiOGfLtVZqwWoj_k-ZYI1sCi_0wwuF7KD35WYXst2kMEC6s0Iq1Sj2x0iXxpwT-h3hzD6GY0s49jGcQqtnug093v3T2eXlxd8-5Al_7zykn1ZpqRf25vLErlbq7OaMf7Ur-QB6vKKn
Cites_doi 10.1016/j.advengsoft.2006.09.003
10.1137/1.9780898718003
10.1002/cnm.927
10.1090/S0025-5718-1991-1090464-8
10.1145/355887.355893
10.1007/978-1-4612-4288-8
10.1002/fld.407
10.1007/3-540-28073-1_42
10.1002/cnm.517
10.1002/cnm.518
10.1002/nla.1680010504
10.1002/(SICI)1097-0363(19980615)26:10<1217::AID-FLD693>3.0.CO;2-M
10.1137/0913032
10.1002/(SICI)1099-1506(199605/06)3:3<221::AID-NLA80>3.0.CO;2-7
10.1002/cnm.660
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7QO
P64
DOI 10.1002/cnm.1239
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
CrossRef
Engineering Research Database
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2040-7947
EndPage 1585
ExternalDocumentID 23668602
10_1002_cnm_1239
CNM1239
ark_67375_WNG_FF6KWK1J_F
Genre miscellaneous
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  funderid: CGL2008‐06003‐C03‐02/CLI; DPI2007‐62395
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7QO
P64
ID FETCH-LOGICAL-c4369-a7b11425bfe1e008c7bcea4e2ae2ca9d6e3d86fc1a0a5dbd03f2071a4d618f6f3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285931900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-7939
2040-7947
IngestDate Tue Oct 07 09:18:52 EDT 2025
Thu Oct 02 21:04:58 EDT 2025
Mon Jul 21 09:18:15 EDT 2025
Sat Nov 29 03:05:11 EST 2025
Sun Sep 21 06:27:57 EDT 2025
Sun Sep 21 06:20:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Transient response
Convection diffusion equation
Matrix factorization
Conjugate gradient methods
Experimental study
symmetric linear systems
Convection
convection-diffusion
active subdomains
Filters
activated-carbon filters
Activated carbon
Automotive industry
Diffusion equation
Domain decomposition
Preconditioning
Cholesky factorization
Heat transfer
multiplicative Schwarz method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4369-a7b11425bfe1e008c7bcea4e2ae2ca9d6e3d86fc1a0a5dbd03f2071a4d618f6f3
Notes Ministerio de Ciencia e Innovación - No. CGL2008-06003-C03-02/CLI; No. DPI2007-62395
istex:E1751912513EEADD47DEB1B1BDF0291FB95C74E0
ArticleID:CNM1239
ark:/67375/WNG-FF6KWK1J-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/190700
PQID 1020838665
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1776650492
proquest_miscellaneous_1020838665
pascalfrancis_primary_23668602
crossref_primary_10_1002_cnm_1239
wiley_primary_10_1002_cnm_1239_CNM1239
istex_primary_ark_67375_WNG_FF6KWK1J_F
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Duff IS, Erisman AM, Reid JK. Direct Methods for Sparse Matrices (2nd edn). Oxford University Press: Oxford, 1992.
Munksgaard N. Solving sparse symetric sets of linear equations by preconditioned conjugate gradients. ACM Transactions on Mathematical Software 1980; 6(2):206-219.
Hackbusch W. Iterative Solution of Large Sparse Systems of Equations, vol. 95. Applied Mathematical Sciences. Springer: New York, 1994.
Cai X-C, Gropp D, Keyes DE. A comparison of some domain decomposition algorithms and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numerical Linear Algebra with Applications 1994; 1(5):477-504.
Xiao-Chuan C, Sarkis M. Local multiplicative Schwarz algorithms for steady and unsteady convection-diffusion equations. East-West Journal of Numerical Mathematics 1998; 6(1):27-41.
Saad Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics: Philadelphia, 2003.
Ferragut L, Asensio MI, Monedero S. Modelling radiation and moisture content in fire spread. Communications in Numerical Methods in Engineering 2007; 23(9):819-833.
Cai X-C, Saad Y. Overlapping domain decomposition algorithms for general sparse matrices. Numerical Linear Algebra with Applications 1996; 3(3):221-237.
Rodríguez-Ferran A, Sandoval ML. Numerical performance of incomplete factorizations for 3D transient convection-diffusion problems. Advances in Engineering Software 2007; 38(6):439-450.
Singh KM, Williams JJR. Application of the additive Schwarz method to large scale Poisson problems. Communications in Numerical Methods in Engineering 2004; 20(3):193-205.
Brakkee E, Vuik C, Wesseling P. Domain decomposition for the incompressible Navier-Stokes equations: solving subdomain problems accurately and inaccurately. International Journal for Numerical Methods in Fluids 1998; 26(10):1217-1238.
Huerta A, Roig B, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations: II-accuracy analysis and examples. Communications in Numerical Methods in Engineering 2002; 18(8):575-584.
Tang W-P. Generalized Schwarz splittings. SIAM Journal on Scientific Computing 1992; 13(2):573-595.
Huerta A, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations: I-time and space discretization. Communications in Numerical Methods in Engineering 2002; 18(8):565-573.
Bramble JH, Pasciak JE, Wang J, Xu J. Convergence estimates for product iterative methods with applications to domain decomposition. Mathematics of Computation 1991; 57(195):1-21.
Garbey M, Tromeur-Dervout D. On some Aitken-like acceleration of the Schwarz method. International Journal for Numerical Methods in Fluids 2002; 40(12):1493-1513.
Meurant G. Computer Solution of Large Linear Systems. Studies in Mathematics and its Applications, vol. 28. Elsevier: Amsterdam, 1999.
1998; 26
2004; 20
2002; 18
1991; 57
2002; 40
1980; 6
2006
1992; 13
2003
1992
1994; 1
1998; 6
2007; 23
1996; 3
1994; 95
2007; 38
1988
1999
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Xiao‐Chuan C (e_1_2_7_7_2) 1998; 6
Duff IS (e_1_2_7_18_2) 1992
Meurant G (e_1_2_7_20_2) 1999
References_xml – reference: Meurant G. Computer Solution of Large Linear Systems. Studies in Mathematics and its Applications, vol. 28. Elsevier: Amsterdam, 1999.
– reference: Munksgaard N. Solving sparse symetric sets of linear equations by preconditioned conjugate gradients. ACM Transactions on Mathematical Software 1980; 6(2):206-219.
– reference: Bramble JH, Pasciak JE, Wang J, Xu J. Convergence estimates for product iterative methods with applications to domain decomposition. Mathematics of Computation 1991; 57(195):1-21.
– reference: Hackbusch W. Iterative Solution of Large Sparse Systems of Equations, vol. 95. Applied Mathematical Sciences. Springer: New York, 1994.
– reference: Saad Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics: Philadelphia, 2003.
– reference: Xiao-Chuan C, Sarkis M. Local multiplicative Schwarz algorithms for steady and unsteady convection-diffusion equations. East-West Journal of Numerical Mathematics 1998; 6(1):27-41.
– reference: Rodríguez-Ferran A, Sandoval ML. Numerical performance of incomplete factorizations for 3D transient convection-diffusion problems. Advances in Engineering Software 2007; 38(6):439-450.
– reference: Garbey M, Tromeur-Dervout D. On some Aitken-like acceleration of the Schwarz method. International Journal for Numerical Methods in Fluids 2002; 40(12):1493-1513.
– reference: Cai X-C, Gropp D, Keyes DE. A comparison of some domain decomposition algorithms and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numerical Linear Algebra with Applications 1994; 1(5):477-504.
– reference: Singh KM, Williams JJR. Application of the additive Schwarz method to large scale Poisson problems. Communications in Numerical Methods in Engineering 2004; 20(3):193-205.
– reference: Huerta A, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations: I-time and space discretization. Communications in Numerical Methods in Engineering 2002; 18(8):565-573.
– reference: Huerta A, Roig B, Donea J. Time-accurate solution of stabilized convection-diffusion-reaction equations: II-accuracy analysis and examples. Communications in Numerical Methods in Engineering 2002; 18(8):575-584.
– reference: Tang W-P. Generalized Schwarz splittings. SIAM Journal on Scientific Computing 1992; 13(2):573-595.
– reference: Duff IS, Erisman AM, Reid JK. Direct Methods for Sparse Matrices (2nd edn). Oxford University Press: Oxford, 1992.
– reference: Ferragut L, Asensio MI, Monedero S. Modelling radiation and moisture content in fire spread. Communications in Numerical Methods in Engineering 2007; 23(9):819-833.
– reference: Brakkee E, Vuik C, Wesseling P. Domain decomposition for the incompressible Navier-Stokes equations: solving subdomain problems accurately and inaccurately. International Journal for Numerical Methods in Fluids 1998; 26(10):1217-1238.
– reference: Cai X-C, Saad Y. Overlapping domain decomposition algorithms for general sparse matrices. Numerical Linear Algebra with Applications 1996; 3(3):221-237.
– volume: 95
  year: 1994
– volume: 23
  start-page: 819
  issue: 9
  year: 2007
  end-page: 833
  article-title: Modelling radiation and moisture content in fire spread
  publication-title: Communications in Numerical Methods in Engineering
– volume: 6
  start-page: 27
  issue: 1
  year: 1998
  end-page: 41
  article-title: Local multiplicative Schwarz algorithms for steady and unsteady convection–diffusion equations
  publication-title: East–West Journal of Numerical Mathematics
– year: 1988
– year: 2006
– volume: 57
  start-page: 1
  issue: 195
  year: 1991
  end-page: 21
  article-title: Convergence estimates for product iterative methods with applications to domain decomposition
  publication-title: Mathematics of Computation
– year: 2003
– volume: 20
  start-page: 193
  issue: 3
  year: 2004
  end-page: 205
  article-title: Application of the additive Schwarz method to large scale Poisson problems
  publication-title: Communications in Numerical Methods in Engineering
– volume: 1
  start-page: 477
  issue: 5
  year: 1994
  end-page: 504
  article-title: A comparison of some domain decomposition algorithms and ILU preconditioned iterative methods for nonsymmetric elliptic problems
  publication-title: Numerical Linear Algebra with Applications
– volume: 40
  start-page: 1493
  issue: 12
  year: 2002
  end-page: 1513
  article-title: On some Aitken‐like acceleration of the Schwarz method
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 18
  start-page: 575
  issue: 8
  year: 2002
  end-page: 584
  article-title: Time‐accurate solution of stabilized convection–diffusion‐reaction equations: II—accuracy analysis and examples
  publication-title: Communications in Numerical Methods in Engineering
– year: 1992
– volume: 38
  start-page: 439
  issue: 6
  year: 2007
  end-page: 450
  article-title: Numerical performance of incomplete factorizations for 3D transient convection–diffusion problems
  publication-title: Advances in Engineering Software
– volume: 13
  start-page: 573
  issue: 2
  year: 1992
  end-page: 595
  article-title: Generalized Schwarz splittings
  publication-title: SIAM Journal on Scientific Computing
– volume: 3
  start-page: 221
  issue: 3
  year: 1996
  end-page: 237
  article-title: Overlapping domain decomposition algorithms for general sparse matrices
  publication-title: Numerical Linear Algebra with Applications
– volume: 26
  start-page: 1217
  issue: 10
  year: 1998
  end-page: 1238
  article-title: Domain decomposition for the incompressible Navier–Stokes equations: solving subdomain problems accurately and inaccurately
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 18
  start-page: 565
  issue: 8
  year: 2002
  end-page: 573
  article-title: Time‐accurate solution of stabilized convection–diffusion‐reaction equations: I—time and space discretization
  publication-title: Communications in Numerical Methods in Engineering
– volume: 6
  start-page: 206
  issue: 2
  year: 1980
  end-page: 219
  article-title: Solving sparse symetric sets of linear equations by preconditioned conjugate gradients
  publication-title: ACM Transactions on Mathematical Software
– year: 1999
– ident: e_1_2_7_6_2
  doi: 10.1016/j.advengsoft.2006.09.003
– volume: 6
  start-page: 27
  issue: 1
  year: 1998
  ident: e_1_2_7_7_2
  article-title: Local multiplicative Schwarz algorithms for steady and unsteady convection–diffusion equations
  publication-title: East–West Journal of Numerical Mathematics
– ident: e_1_2_7_12_2
  doi: 10.1137/1.9780898718003
– ident: e_1_2_7_2_2
  doi: 10.1002/cnm.927
– volume-title: Computer Solution of Large Linear Systems
  year: 1999
  ident: e_1_2_7_20_2
– ident: e_1_2_7_8_2
  doi: 10.1090/S0025-5718-1991-1090464-8
– ident: e_1_2_7_19_2
  doi: 10.1145/355887.355893
– ident: e_1_2_7_17_2
  doi: 10.1007/978-1-4612-4288-8
– ident: e_1_2_7_15_2
  doi: 10.1002/fld.407
– volume-title: Direct Methods for Sparse Matrices
  year: 1992
  ident: e_1_2_7_18_2
– ident: e_1_2_7_3_2
  doi: 10.1007/3-540-28073-1_42
– ident: e_1_2_7_4_2
  doi: 10.1002/cnm.517
– ident: e_1_2_7_5_2
  doi: 10.1002/cnm.518
– ident: e_1_2_7_13_2
  doi: 10.1002/nla.1680010504
– ident: e_1_2_7_14_2
  doi: 10.1002/(SICI)1097-0363(19980615)26:10<1217::AID-FLD693>3.0.CO;2-M
– ident: e_1_2_7_10_2
  doi: 10.1137/0913032
– ident: e_1_2_7_11_2
  doi: 10.1002/(SICI)1099-1506(199605/06)3:3<221::AID-NLA80>3.0.CO;2-7
– ident: e_1_2_7_9_2
– ident: e_1_2_7_16_2
  doi: 10.1002/cnm.660
SSID ssj0000299973
Score 1.8467087
Snippet An efficient algorithm to find the solution of transient convection–diffusion problems with dominant convection is presented. The main idea is to follow the...
An efficient algorithm to find the solution of transient convection-diffusion problems with dominant convection is presented. The main idea is to follow the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1573
SubjectTerms activated-carbon filters
active subdomains
Algorithms
Automotive components
Automotive industry
Cholesky factorization
Conjugate gradient method
Convection
Convection and heat transfer
convection-diffusion
Emissions control
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Mathematical models
multiplicative Schwarz method
Physics
symmetric linear systems
Turbulent flows, convection, and heat transfer
Title A multiplicative Schwarz method with active subdomains for transient convection-diffusion problems
URI https://api.istex.fr/ark:/67375/WNG-FF6KWK1J-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1239
https://www.proquest.com/docview/1020838665
https://www.proquest.com/docview/1776650492
Volume 26
WOSCitedRecordID wos000285931900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZglwMXWl5igVZGQr2FbpzEsY9VISAKK4So2ls0fqkVahZtdgvixH_oP-wvYcbJBvYAQuKUg-3YmvGMP4_nwdhzpaRyUEAijC4oqbZLjLZ45zEZ5TsLIGRXbKKczdTpqf7Qe1VSLEyXH2IwuJFkRH1NAg6m3f-VNNQ2Fy9Q7eqbbCxw2-YjNn75sTp-N1hYpqhpdXxiFtFtTmd6nX12KvbXwzfOozGR9hv5R0KLJApdbYsN8Pk7hI1nULX1P6vfZnd65MkPuq1yl93wzT221aNQ3st4e5-5A957GUZz3qXHtrOvsPjOu2rTnEy3HKKe5O3KuPkFnDctR_TLl3TyUYQlj97sMWbi-scVVWFZkVmO9_Vr2gfsuHr16fBN0tdiSGyeSZ1AaSjqtjDBpx5xgy2N9ZB7AV5Y0E76zCkZbApTKJxx0ywIRC-QO5mqIEP2kI2aeeMfMe6lSvOAONArn4sQwNjcCa2CLoOBwk7YszVH6i9dyo26S64saiRbTWSbsL3IqqEDLD6Ti1pZ1Cez13VVyaOTo_RtXU3Y7gYvhwEik5Lqb-Fsa-bWKFn0XAKNn69anFAgPqV8gH_pU5bYjrcs_M9e5Pcfl1wfzt7T9_G_dnzCbovBd-YpGy0XK7_DbtnL5Xm72O13-09UBAbg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXSS4UJ5ieRQjod5CN07ixOJUFUJhtxFCrdqb5aeoULNos1sQJ_4D_5Bfgsd5wB5ASJxysB1bM57x5_E8AJ4VBSuMzGREFc8wqbaJFNf-zqMSzHfmJGVtsYm8qoqzM_5uC170sTBtfojB4IaSEfQ1CjgapPd-ZQ3V9cVzr3f5FRinfhdlIxi_fF-ezAcTy9SrWh7emGnwm-MJ79PPTuleP3zjQBojbb-gg6RsPI1cW9xiA33-jmHDIVRu_9fyb8KNDnuS_Xaz3IItW9-G7Q6Hkk7Kmztg9knnZxgMepfWt334LJdfSVtvmqDxlsigKUmzVmZxIc_rhnj8S1Z49mGMJQn-7CFq4se371iHZY2GOdJVsGnuwkn56vjgMOqqMUQ6TRiPZK4w7jZTzsbWIwedK21laqm0VEtumE1MwZyO5VRmRplp4qjHLzI1LC4cc8k9GNWL2t4HYlkRp84jQVvYlDonlU4N5YXjuVMy0xN42rNEfGqTbog2vTIVnmwCyTaB3cCroYNcfkQntTwTp9VrUZZsdjqL34pyAjsbzBwG0IQxrMDlZ-u5K7xs4YOJrO1i3fgJqUeomBHwL33y3Lf7e5b_z25g-B-XLA6qI_w--NeOT-Da4fHRXMzfVLOHcJ0OnjSPYLRaru1juKovV-fNcqfb-j8B-fUK0A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKFyEulKdYHsVIqLfQjZM4sThVbcNjS1QhqvZm-Skq1Gy12S2IE_-Bf9hf0hnnUfYAQuKUg-3YmvGMP4_nQcirouCFVZmKmBYZJtW2kRYG7jw6wXxnXjHeFpvIq6o4ORGHa-RNHwvT5ocYDG4oGUFfo4C7c-u3r7OGmvrsNehdcYOM0kxwkMrR3qfy6GAwsUxA1YrwxsyC35xIRJ9-dsK2--ErB9IIafsdHSRVAzTybXGLFfT5O4YNh1C58V_Lv0vudNiT7rSb5R5Zc_V9stHhUNpJefOA2B3a-RkGg96Fg7Yv39T8B23rTVM03lIVNCVtltrOztRp3VDAv3SBZx_GWNLgzx6iJi5__sI6LEs0zNGugk3zkByV-59330VdNYbIpAkXkco1xt1m2rvYAXIwuTZOpY4px4wSlrvEFtybWE1UZrWdJJ4BflGp5XHhuU8ekfV6VrvHhDpexKkHJOgKlzLvlTapZaLwIvdaZWZMXvYskedt0g3ZpldmEsgmkWxjshV4NXRQ86_opJZn8rh6K8uST4-n8QdZjsnmCjOHASzhHCtwwWw9dyXIFj6YqNrNlg1MyAChYkbAv_TJc2iHexb8Zysw_I9LlrvVR_w--deOL8itw71SHryvpk_JbTY40jwj64v50j0nN83F4rSZb3Y7_wp44QpL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiplicative+Schwarz+method+with+active+subdomains+for+transient+convection%E2%80%93diffusion+problems&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Sandoval%2C+M.+L.&rft.au=Rodr%C3%ADguez%E2%80%90Ferran%2C+A.&rft.date=2010-12-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=26&rft.issue=12&rft.spage=1573&rft.epage=1585&rft_id=info:doi/10.1002%2Fcnm.1239&rft.externalDBID=10.1002%252Fcnm.1239&rft.externalDocID=CNM1239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon