One-Bit Compressed Sensing by Linear Programming
We give the first computationally tractable and almost optimal solution to the problem of one‐bit compressed sensing, showing how to accurately recover an s‐sparse vector \input amssym $x \in {\Bbb R}^n$ from the signs of $O(s \log^2(n/s))$ random linear measurements of x. The recovery is achieved b...
Uložené v:
| Vydané v: | Communications on pure and applied mathematics Ročník 66; číslo 8; s. 1275 - 1297 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2013
John Wiley and Sons, Limited |
| Predmet: | |
| ISSN: | 0010-3640, 1097-0312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We give the first computationally tractable and almost optimal solution to the problem of one‐bit compressed sensing, showing how to accurately recover an s‐sparse vector
\input amssym $x \in {\Bbb R}^n$
from the signs of $O(s \log^2(n/s))$
random linear measurements of x. The recovery is achieved by a simple linear program. This result extends to approximately sparse vectors x. Our result is universal in the sense that with high probability, one measurement scheme will successfully recover all sparse vectors simultaneously. The argument is based on solving an equivalent geometric problem on random hyperplane tessellations. |
|---|---|
| Bibliografia: | istex:88EF71FF4DE8B44BBA77AF51C72D2B3C173CA0D3 ArticleID:CPA21442 ark:/67375/WNG-FS64H2S6-V SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0010-3640 1097-0312 |
| DOI: | 10.1002/cpa.21442 |