A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem
A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain x ∈ R n , such that A x > 0 , x > 0 , for an m × n matrix A , m ≥ n . This algorithm requires O ( p ) iterations and O ( m 2 ( n + p ) )...
Uložené v:
| Vydané v: | Mathematical methods of operations research (Heidelberg, Germany) Ročník 80; číslo 3; s. 267 - 284 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-2994, 1432-5217 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain
x
∈
R
n
, such that
A
x
>
0
,
x
>
0
, for an
m
×
n
matrix
A
,
m
≥
n
. This algorithm requires
O
(
p
)
iterations and
O
(
m
2
(
n
+
p
)
)
arithmetical operations to ensure that the distance between the solution and the iteration is
10
-
p
. No matrix inversion is needed. An extension to the non-homogeneous linear feasibility problem is presented. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1432-2994 1432-5217 |
| DOI: | 10.1007/s00186-014-0480-y |