Microgrid Planning Under Uncertainty

This paper presents a model for the microgrid planning problem with uncertain physical and financial information. The microgrid planning problem investigates the economic viability of microgrid deployment and determines the optimal generation mix of distributed energy resources (DERs) for installati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems Jg. 30; H. 5; S. 2417 - 2425
Hauptverfasser: Khodaei, Amin, Bahramirad, Shay, Shahidehpour, Mohammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0885-8950, 1558-0679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a model for the microgrid planning problem with uncertain physical and financial information. The microgrid planning problem investigates the economic viability of microgrid deployment and determines the optimal generation mix of distributed energy resources (DERs) for installation. Net metering is considered for exchanging power with the main grid and lowering the cost of unserved energy and DER investments. A robust optimization approach is adopted for considering forecast errors in load, variable renewable generation, and market prices. The microgrid islanding is further treated as a source of uncertainty. The microgrid planning problem is decomposed into an investment master problem and an operation subproblem. The optimal planning decisions determined in the master problem are employed in the subproblem to examine the optimality of the master solution by calculating the worst-case optimal operation under uncertain conditions. Optimality cuts sent to the master problem will govern subsequent iterations. Numerical simulations exhibit the effectiveness of the proposed model and further analyze the sensitivity of microgrid planning results on variety levels of uncertainty.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2014.2361094