Guarded Cubical Type Theory
This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with c...
Saved in:
| Published in: | Journal of automated reasoning Vol. 63; no. 2; pp. 211 - 253 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.08.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0168-7433, 1573-0670, 1573-0670 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper improves the treatment of equality in guarded dependent type theory (
GDTT
), by combining it with cubical type theory (
CTT
).
GDTT
is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement
GDTT
with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions.
CTT
is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms.
CTT
provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (
GCTT
), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of
CTT
as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that
CTT
can be given semantics in presheaves on
C
×
D
, where
C
is the cube category, and
D
is any small category with an initial object. We then show that the category of presheaves on
C
×
ω
provides semantics for
GCTT
. |
|---|---|
| AbstractList | This paper improves the treatment of equality in guarded dependent type theory (
GDTT
), by combining it with cubical type theory (
CTT
).
GDTT
is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement
GDTT
with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions.
CTT
is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms.
CTT
provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (
GCTT
), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of
CTT
as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that
CTT
can be given semantics in presheaves on
C
×
D
, where
C
is the cube category, and
D
is any small category with an initial object. We then show that the category of presheaves on
C
×
ω
provides semantics for
GCTT
. This paper improves the treatment of equality in guarded dependent type theory ((Formula presented.)), by combining it with cubical type theory ((Formula presented.)). (Formula presented.) is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement (Formula presented.) with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. (Formula presented.) is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. (Formula presented.) provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory ((Formula presented.)), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of (Formula presented.) as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that (Formula presented.) can be given semantics in presheaves on (Formula presented.), where (Formula presented.) is the cube category, and (Formula presented.) is any small category with an initial object. We then show that the category of presheaves on (Formula presented.) provides semantics for (Formula presented.). This paper improves the treatment of equality in guarded dependent type theory (\[\mathsf {GDTT}\]), by combining it with cubical type theory (\[\mathsf {CTT}\]). \[\mathsf {GDTT}\] is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement \[\mathsf {GDTT}\] with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. \[\mathsf {CTT}\] is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. \[\mathsf {CTT}\] provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (\[\mathsf {GCTT}\]), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of \[\mathsf {CTT}\] as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that \[\mathsf {CTT}\] can be given semantics in presheaves on \[\mathcal {C}\times \mathbb {D}\], where \[\mathcal {C}\] is the cube category, and \[\mathbb {D}\] is any small category with an initial object. We then show that the category of presheaves on \[\mathcal {C}\times \omega \] provides semantics for \[\mathsf {GCTT}\]. |
| Author | Grathwohl, Hans Bugge Vezzosi, Andrea Birkedal, Lars Clouston, Ranald Spitters, Bas Bizjak, Aleš |
| Author_xml | – sequence: 1 givenname: Lars surname: Birkedal fullname: Birkedal, Lars organization: Department of Computer Science, Aarhus University – sequence: 2 givenname: Aleš surname: Bizjak fullname: Bizjak, Aleš organization: Department of Computer Science, Aarhus University – sequence: 3 givenname: Ranald surname: Clouston fullname: Clouston, Ranald organization: Department of Computer Science, Aarhus University – sequence: 4 givenname: Hans Bugge surname: Grathwohl fullname: Grathwohl, Hans Bugge organization: Department of Computer Science, Aarhus University – sequence: 5 givenname: Bas orcidid: 0000-0002-2802-0973 surname: Spitters fullname: Spitters, Bas organization: Department of Computer Science, Aarhus University – sequence: 6 givenname: Andrea surname: Vezzosi fullname: Vezzosi, Andrea organization: Department of Computer Science and Engineering, Chalmers University of Technology |
| BackLink | https://research.chalmers.se/publication/510847$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kE1r3DAQhkVIIZu0PyDkstCzkxlLsqxjWJoPCOTQ7XkYS-Ouw8beSDZl_30dNiFQaE5zeZ-Xd55TddwPvSh1jnCJAO4qI9ToCsC68MZh4Y7UAq3TBVQOjtUCsKoLZ7Q-Uac5PwGARvALdXE7cYoSl6up6QJvl-v9TpbrjQxp_1V9aXmb5dvbPVO_bn6sV3fFw-Pt_er6oQhG27FgDLFBZ2yomUvvmxacARGBKmjxbDVjWQW2sY661oZRN7bx3gl4aJugz9TPQ2_-I7upoV3qnjntaeCOkmThFDYUNrx9lpQpC4GzpoXSE0ZbkjGhojo0SDp6jlXFNkSZW78fWndpeJkkj_Q0TKmfH6GytEZDZR3OKXdIhTTknKSl0I08dkM_Ju62hECvfungl2a_9OqX3EziP-T77s-Y8u3TOdv_lvSx6f_QX0MYjQc |
| CitedBy_id | crossref_primary_10_1017_S0960129521000311 crossref_primary_10_3390_math10203800 crossref_primary_10_1016_j_jlamp_2022_100846 crossref_primary_10_1017_S0960129521000347 crossref_primary_10_1145_3434283 crossref_primary_10_1145_3704866 crossref_primary_10_1017_S0956796821000034 |
| Cites_doi | 10.1215/S0012-7094-37-00334-X 10.1145/2544174.2500597 10.1017/S0004972700022966 10.1017/S0956796807006326 10.1109/LICS.2000.855774 10.1145/1292597.1292608 10.1016/j.entcs.2015.12.007 10.1145/1925844.1926401 10.1007/978-3-319-12736-1_8 10.1109/LICS.2013.27 10.2168/LMCS-8(4:1)2012 10.1007/978-1-4020-5587-4_8 10.1016/S0049-237X(08)71945-1 10.1007/978-1-4471-0963-1 10.1007/3-540-61780-9_66 10.1007/978-1-4757-4721-8 10.1007/978-3-662-46678-0_26 10.1007/978-3-662-49630-5_2 10.1145/2603088.2603132 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2018 Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Nature B.V. 2018 – notice: Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTPV AOWAS F1S |
| DOI | 10.1007/s10817-018-9471-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0670 |
| EndPage | 253 |
| ExternalDocumentID | oai_research_chalmers_se_0754f029_1d52_44c6_8cb1_3d9ad66a5cde 10_1007_s10817_018_9471_7 |
| GrantInformation_xml | – fundername: Villum Fonden grantid: 00012386 funderid: http://dx.doi.org/10.13039/100008398 – fundername: The Danish Council for Independent Research for the Natural Sciences – fundername: Microsoft (US) |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29J 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV L6V LAK LLZTM M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW 7SC 8FD AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTPV AOWAS F1S |
| ID | FETCH-LOGICAL-c435t-a1cdb1745c8aa299bf0740eee06c3e9a53a126ca5d8d3834a13b5b997e090fbc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475656400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-7433 1573-0670 |
| IngestDate | Wed Nov 05 04:01:01 EST 2025 Tue Nov 04 22:35:24 EST 2025 Tue Nov 18 21:18:17 EST 2025 Sat Nov 29 07:47:00 EST 2025 Fri Feb 21 02:34:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Guarded recursion Homotopy type theory Cubical type theory |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c435t-a1cdb1745c8aa299bf0740eee06c3e9a53a126ca5d8d3834a13b5b997e090fbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2802-0973 |
| OpenAccessLink | http://www.cs.au.dk/~spitters/TYPES16.pdf |
| PQID | 2254306571 |
| PQPubID | 2028908 |
| PageCount | 43 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_0754f029_1d52_44c6_8cb1_3d9ad66a5cde proquest_journals_2254306571 crossref_citationtrail_10_1007_s10817_018_9471_7 crossref_primary_10_1007_s10817_018_9471_7 springer_journals_10_1007_s10817_018_9471_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Journal of automated reasoning |
| PublicationTitleAbbrev | J Autom Reasoning |
| PublicationYear | 2019 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Bizjak, A., Møgelberg, R.E.: A model of guarded recursion with clock synchronisation. In: MFPS, pp. 83–101 (2015) VickersSAielloMPratt-HartmannIEvan BenthemJFAKLocales and toposes as spacesHandbook of Spatial Logics2007BerlinSpringer42949610.1007/978-1-4020-5587-4_8 JohnstonePTSketches of an Elephant: A Topos Theory Compendium2002OxfordOxford University Press1071.18001 Dybjer, P.: Internal type theory. In: TYPES ’95, pp. 120–134 (1996) Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after Voevodsky). arXiv:1211.2851 (2012) Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: ICFP, pp. 197–208 (2013) CloustonRBizjakAGrathwohlHBBirkedalLThe guarded lambda-calculus: programming and reasoning with guarded recursion for coinductive typesLog. Methods Comput. Sci.2016354885606703913 The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations for Mathematics. Institute for Advanced Study (2013) Huber, S.: Canonicity for cubical type theory. arXiv:1607.04156 (2016) BirkhoffGRings of setsDuke Math. J.19373344354154600010.1215/S0012-7094-37-00334-X0017.19403 Mac LaneSCategories for the Working Mathematician1978BerlinSpringer10.1007/978-1-4757-4721-80232.18001 Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.: Guarded cubical type theory: path equality for guarded recursion. In: CSL, vol. 3, p. 37 (2016) Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation of the univalence axiom. In: Post-proceedings of the 21st International Conference on Types for Proofs and Programs, TYPES 2015 (2016) Hofmann, M., Streicher, T.: Lifting Grothendieck universes. http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf (1999). Accessed 13 June 2018 CornishWFowlerPCoproducts of de Morgan algebrasBull. Aust. Math. Soc.197716111343490710.1017/S00049727000229660329.06005 Møgelberg, R.E.: A type theory for productive coprogramming via guarded recursion. In: CSL-LICS (2014) Phoa, W.: An introduction to fibrations, topos theory, the effective topos and modest sets. Technical Report ECS-LFCS-92-208, LFCS, University of Edinburgh (1992) Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types. In: APLAS, pp. 140–158 (2014) Orton, I., Pitts, A.M.: Axioms for modelling cubical type theory in a topos. In: CSL (2016) Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded dependent type theory with coinductive types. In: FoSSaCS, pp. 20–35 (2016) Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: POPL, pp. 119–132 (2011) Voevodsky, V.: Martin-Lof identity types in the C-systems defined by a universe category. arXiv:1505.06446 (2015) McBrideCPatersonRApplicative programming with effectsJ. Funct. Program.200818111310.1017/S09567968070063261128.68020 Coquand, T.: Internal version of the uniform Kan filling condition. http://www.cse.chalmers.se/~coquand/shape.pdf (2015). Accessed 13 June 2018 Birkedal, L., Rasmus, E.M.: Intensional type theory with guarded recursive types qua fixed points on universes. In: LICS, pp. 213–222 (2013) Mac LaneSMoerdijkISheaves in Geometry and Logic1992BerlinSpringer0822.18001 Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Logic Colloquium ’73, pp. 73–118 (1975) The Coq Development Team: The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0 (2004) Sacchini, J.L.: Well-founded sized types in the calculus of constructions. In: TYPES 2015 talk (2015) http://cs.ioc.ee/types15/programme-slides.html (2015). Accessed 13 June 2018 Spitters, B.: Cubical sets as a classifying topos. In: TYPES (2015) Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000) Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: PLPV, pp. 57–68 (2007) Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in synthetic guarded domain theory: step-indexing in the topos of trees. In: LMCS, vol. 8, no. 4 (2012) HofmannMExtensional Constructs in Intensional Type Theory1997BerlinSpringer10.1007/978-1-4471-0963-107048067 Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. Thesis, Chalmers University of Technology (2007) 9471_CR9 S Mac Lane (9471_CR21) 1978 9471_CR18 PT Johnstone (9471_CR19) 2002 W Cornish (9471_CR14) 1977; 16 G Birkhoff (9471_CR8) 1937; 3 R Clouston (9471_CR11) 2016 9471_CR23 9471_CR24 C McBride (9471_CR25) 2008; 18 9471_CR26 9471_CR27 9471_CR28 M Hofmann (9471_CR16) 1997 9471_CR20 9471_CR29 S Mac Lane (9471_CR22) 1992 9471_CR10 9471_CR32 9471_CR33 9471_CR12 9471_CR13 9471_CR35 9471_CR15 9471_CR17 9471_CR1 9471_CR2 9471_CR3 9471_CR4 9471_CR5 9471_CR6 S Vickers (9471_CR34) 2007 9471_CR7 9471_CR30 9471_CR31 |
| References_xml | – reference: McBrideCPatersonRApplicative programming with effectsJ. Funct. Program.200818111310.1017/S09567968070063261128.68020 – reference: Mac LaneSMoerdijkISheaves in Geometry and Logic1992BerlinSpringer0822.18001 – reference: Spitters, B.: Cubical sets as a classifying topos. In: TYPES (2015) – reference: The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations for Mathematics. Institute for Advanced Study (2013) – reference: Coquand, T.: Internal version of the uniform Kan filling condition. http://www.cse.chalmers.se/~coquand/shape.pdf (2015). Accessed 13 June 2018 – reference: Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after Voevodsky). arXiv:1211.2851 (2012) – reference: Phoa, W.: An introduction to fibrations, topos theory, the effective topos and modest sets. Technical Report ECS-LFCS-92-208, LFCS, University of Edinburgh (1992) – reference: Orton, I., Pitts, A.M.: Axioms for modelling cubical type theory in a topos. In: CSL (2016) – reference: Voevodsky, V.: Martin-Lof identity types in the C-systems defined by a universe category. arXiv:1505.06446 (2015) – reference: Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: POPL, pp. 119–132 (2011) – reference: CornishWFowlerPCoproducts of de Morgan algebrasBull. Aust. Math. Soc.197716111343490710.1017/S00049727000229660329.06005 – reference: VickersSAielloMPratt-HartmannIEvan BenthemJFAKLocales and toposes as spacesHandbook of Spatial Logics2007BerlinSpringer42949610.1007/978-1-4020-5587-4_8 – reference: Bizjak, A., Møgelberg, R.E.: A model of guarded recursion with clock synchronisation. In: MFPS, pp. 83–101 (2015) – reference: Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types. In: APLAS, pp. 140–158 (2014) – reference: Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: PLPV, pp. 57–68 (2007) – reference: Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded dependent type theory with coinductive types. In: FoSSaCS, pp. 20–35 (2016) – reference: Birkedal, L., Rasmus, E.M.: Intensional type theory with guarded recursive types qua fixed points on universes. In: LICS, pp. 213–222 (2013) – reference: Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation of the univalence axiom. In: Post-proceedings of the 21st International Conference on Types for Proofs and Programs, TYPES 2015 (2016) – reference: Dybjer, P.: Internal type theory. In: TYPES ’95, pp. 120–134 (1996) – reference: Møgelberg, R.E.: A type theory for productive coprogramming via guarded recursion. In: CSL-LICS (2014) – reference: Mac LaneSCategories for the Working Mathematician1978BerlinSpringer10.1007/978-1-4757-4721-80232.18001 – reference: Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: ICFP, pp. 197–208 (2013) – reference: Hofmann, M., Streicher, T.: Lifting Grothendieck universes. http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf (1999). Accessed 13 June 2018 – reference: Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Logic Colloquium ’73, pp. 73–118 (1975) – reference: JohnstonePTSketches of an Elephant: A Topos Theory Compendium2002OxfordOxford University Press1071.18001 – reference: HofmannMExtensional Constructs in Intensional Type Theory1997BerlinSpringer10.1007/978-1-4471-0963-107048067 – reference: CloustonRBizjakAGrathwohlHBBirkedalLThe guarded lambda-calculus: programming and reasoning with guarded recursion for coinductive typesLog. Methods Comput. Sci.2016354885606703913 – reference: The Coq Development Team: The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0 (2004) – reference: Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. Thesis, Chalmers University of Technology (2007) – reference: Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.: Guarded cubical type theory: path equality for guarded recursion. In: CSL, vol. 3, p. 37 (2016) – reference: Huber, S.: Canonicity for cubical type theory. arXiv:1607.04156 (2016) – reference: Sacchini, J.L.: Well-founded sized types in the calculus of constructions. In: TYPES 2015 talk (2015) http://cs.ioc.ee/types15/programme-slides.html (2015). Accessed 13 June 2018 – reference: Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000) – reference: Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in synthetic guarded domain theory: step-indexing in the topos of trees. In: LMCS, vol. 8, no. 4 (2012) – reference: BirkhoffGRings of setsDuke Math. J.19373344354154600010.1215/S0012-7094-37-00334-X0017.19403 – volume: 3 start-page: 443 issue: 3 year: 1937 ident: 9471_CR8 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-37-00334-X – ident: 9471_CR3 doi: 10.1145/2544174.2500597 – volume: 16 start-page: 1 issue: 1 year: 1977 ident: 9471_CR14 publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972700022966 – volume-title: Sheaves in Geometry and Logic year: 1992 ident: 9471_CR22 – ident: 9471_CR17 – volume: 18 start-page: 1 issue: 1 year: 2008 ident: 9471_CR25 publication-title: J. Funct. Program. doi: 10.1017/S0956796807006326 – ident: 9471_CR27 doi: 10.1109/LICS.2000.855774 – ident: 9471_CR13 – ident: 9471_CR2 doi: 10.1145/1292597.1292608 – ident: 9471_CR32 – ident: 9471_CR9 doi: 10.1016/j.entcs.2015.12.007 – ident: 9471_CR30 – ident: 9471_CR28 – ident: 9471_CR5 doi: 10.1145/1925844.1926401 – ident: 9471_CR1 doi: 10.1007/978-3-319-12736-1_8 – ident: 9471_CR4 doi: 10.1109/LICS.2013.27 – ident: 9471_CR7 – volume-title: Sketches of an Elephant: A Topos Theory Compendium year: 2002 ident: 9471_CR19 – ident: 9471_CR20 – ident: 9471_CR24 – ident: 9471_CR18 – ident: 9471_CR6 doi: 10.2168/LMCS-8(4:1)2012 – start-page: 429 volume-title: Handbook of Spatial Logics year: 2007 ident: 9471_CR34 doi: 10.1007/978-1-4020-5587-4_8 – ident: 9471_CR12 – ident: 9471_CR23 doi: 10.1016/S0049-237X(08)71945-1 – volume-title: Extensional Constructs in Intensional Type Theory year: 1997 ident: 9471_CR16 doi: 10.1007/978-1-4471-0963-1 – ident: 9471_CR33 – ident: 9471_CR15 doi: 10.1007/3-540-61780-9_66 – volume-title: Categories for the Working Mathematician year: 1978 ident: 9471_CR21 doi: 10.1007/978-1-4757-4721-8 – ident: 9471_CR29 – ident: 9471_CR31 – ident: 9471_CR35 – year: 2016 ident: 9471_CR11 publication-title: Log. Methods Comput. Sci. doi: 10.1007/978-3-662-46678-0_26 – ident: 9471_CR10 doi: 10.1007/978-3-662-49630-5_2 – ident: 9471_CR26 doi: 10.1145/2603088.2603132 |
| SSID | ssj0003109 |
| Score | 2.3196266 |
| Snippet | This paper improves the treatment of equality in guarded dependent type theory (
GDTT
), by combining it with cubical type theory (
CTT
).
GDTT
is an... This paper improves the treatment of equality in guarded dependent type theory (\[\mathsf {GDTT}\]), by combining it with cubical type theory (\[\mathsf... This paper improves the treatment of equality in guarded dependent type theory ((Formula presented.)), by combining it with cubical type theory ((Formula... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 211 |
| SubjectTerms | Artificial Intelligence Computation Computer Science Cubical type theory Guarded recursion Homotopy type theory Mathematical Logic and Formal Languages Mathematical Logic and Foundations Number theory Semantics Symbolic and Algebraic Manipulation |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PXhxfuLclB48KcEkbdrmJDIcHsYQVNgt5JMJss118-83adMWPeziuW0a3kveR97L7wfAjcZIU5ulkCokYGKwhbnzDBAzS1zulseJKDU9ziaTfDplL-HArQhtlbVNLA21Xih_Rn5P_K1t5y8z_LD8gp41yldXA4XGLtjzKAm4bN17bSyxR72ssL09ZmYc11XN6upcjn3Tpdvuzj7D7LdfaoPNpj76B0u09D-j7n9nfgQOQ-QZPVZL5RjsmPkJ6NasDlHY5KegX64ao6PhRnoNRj5Vjao7_GfgffT0NnyGgUIBKhcHraHASkuXdFCVC-E8j7QuZEDGGJSq2DBBY4FJqgTVuS4Vg2NJJWOZQQxZqeJz0Jkv5uYCRJJYQwSxLsMgiWSp1G6gzHOVZ4bSHPcAqgXIVcAX9zQXn7xFRvYy507m3MucZz1w23yyrMA1tr08qMXLwz4reCvbHrirNdU-3jLYuFJm818Psx3wlWZczUrymoIXhruYKrGIMI41JTxJVMpzJTGPNRM6TQVV2lxun1sfHLg4i1V9gwPQWa825grsq-_1R7G6LtfsD2Yh7tA priority: 102 providerName: ProQuest |
| Title | Guarded Cubical Type Theory |
| URI | https://link.springer.com/article/10.1007/s10817-018-9471-7 https://www.proquest.com/docview/2254306571 https://research.chalmers.se/publication/510847 |
| Volume | 63 |
| WOSCitedRecordID | wos000475656400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-0670 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003109 issn: 1573-0670 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58Hbz4Fp9LD56UQJM2TXJUUQRlWXwhXkJeRUFWsau_30kfuyoi6KWXNkmTSTLfMDPfAOx5mnpeioJwlxqSB1oSiZqBUFUytN1klpta0hei35d3d2rQ5nFXXbR755Ksb-pPyW6SxjBJPKB4oxIxDbOo7WSs13B5dTu-fiPVZUPoHYkys6xzZf7UxVdlNEGYY6foNwLRWumcLv7rd5dgocWYyWGzKZZhKgxXYLGr35C0x3kVtuv9EXxy_GajrJJolCZNtv4a3JyeXB-fkbZYAnGIeEbEUOctmhfcSWNQx9gSwUEaQkgLlwVleGYoK5zhXvpaBDSz3ColQqrS0rpsHWaGz8OwAYllZWCGlWhLsNyqwnrsSMSq5CJwLukmpN2qadcyiceCFk96woEcJ69x8jpOXotN2B83eWloNH77eKcThW5PVKVZzNpHvCRw-INuxSevf-nsopHgeNxIqN0yKT1o91CXqal0FTSip7xMmdLUc6bz3BVaOkt15pXxRWG482HrT4NvwzwCLNUEDO7AzOj1LezCnHsfPVavPZg9OukPLnswfS5IL0adXuFzwO979Y7-AFdh6Mg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwGP1EaaVygS4ghqXNob20sojtOLYPVVXRItBMRz1QiZvrLQIJDUsGEH-K39jPWWZED3Pj0HMSx8r71th-D-BDoHkQlSyJ8LklRaQVUZgZCNUVw95N8cI2SI_keKxOTvSvJXjoz8KkbZV9TGwCdbjw6R_5HkuntjFfSvr18ook1ai0utpLaLRmMYz3d9iy1V-OviO-Hxk7-HG8f0g6VQHisTSYEkt9cFiHC6-sxWDsKsyieYwxLz2P2gpuKSu9FUGFZq6UO-G0ljHXeeU8x3GfwfOCK5n8aijJLPInls2WSzxxdHLer6K2R_UUTZs8MbxgPiDycR6cF7ez9dh_uEubfHew9r99qVew2lXW2bfWFV7DUpy8gbVetSLrgthb2G68IoZs_8YlC81SK561HAXr8PtJprgBy5OLSdyEzLEqMssq7KBY4XTpAg4kkxa7jEIoOoC8B8z4jj89yXicmznzc8LYIMYmYWzkAD7NHrlsyUMW3bzTw2m6OFKbOZYD-NxbxvzygsFGrfHM3ptoxDv-qFPjTxtxntrU0WDNWFQ504YGwUxR-NIo76jhQdtQllb4ELcWz-09vDw8_jkyo6PxcBtWsKbU7R7JHVieXt_EXXjhb6dn9fW7xl8y-PPUZvcXhJhMvQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BVVcKI9WpA3gA1xAq3rXXq_3gFDVEhE1inIAKeKy3aeKhNKH01b8tf66zvqRqBxyy4Gz7fXK3-x8M97ZbwA-OJo6HkRBuE01yT0NpERmIFQGhrlbmeW6RnokxuNyOpWTDbjvzsLEssrOJ9aO2l3Y-I_8kMVT28iXgh6GtixicjL4enlFYgepuNPatdNoTOTU_73D9K36MjxBrD8yNvj24_g7aTsMEIthwpxoap3BmJzbUmt0zCYgo6be-7SwmZeaZ5qywmruSlfPm2aGGymFT2UajM1w3E14IjDHjOWEE_5rwQJRcbPRFY96nVnW7ag2x_ZKGgs-0dUgNxDxmBOXge5ib_YfHdOa-wY7__NXewHP24g7OWqWyEvY8LNXsNN1s0ha5_YaDurV4l1yfGOi5SYxRU8a7YJd-LmWKe7B1uxi5t9AYljwTLOAmRXLjSyMw4FE7NEuPOcl7UHagadsq6se23v8UUtF6Ii3QrxVxFuJHnxaPHLZiIqsurnfQata_1KpJa49-NxZyfLyisFGjSEt3hvlxVtdqXNlz-umPZWqvMJYMg8pk4o6zlSe20KV1lCVOaldUWhund9fPbf3sI3WpkbD8ekBPMNQUzalk33Yml_f-Lfw1N7Of1fX7-qlk8DZuq3uATM_VeE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guarded+Cubical+Type+Theory&rft.jtitle=Journal+of+automated+reasoning&rft.au=Birkedal%2C+Lars&rft.au=Bizjak%2C+Ale%C5%A1&rft.au=Clouston%2C+Ranald&rft.au=Grathwohl%2C+Hans+Bugge&rft.date=2019-08-01&rft.pub=Springer+Netherlands&rft.issn=0168-7433&rft.eissn=1573-0670&rft.volume=63&rft.issue=2&rft.spage=211&rft.epage=253&rft_id=info:doi/10.1007%2Fs10817-018-9471-7&rft.externalDocID=10_1007_s10817_018_9471_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-7433&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-7433&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-7433&client=summon |