Guarded Cubical Type Theory

This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of automated reasoning Vol. 63; no. 2; pp. 211 - 253
Main Authors: Birkedal, Lars, Bizjak, Aleš, Clouston, Ranald, Grathwohl, Hans Bugge, Spitters, Bas, Vezzosi, Andrea
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.08.2019
Springer Nature B.V
Subjects:
ISSN:0168-7433, 1573-0670, 1573-0670
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory ( GCTT ), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that CTT can be given semantics in presheaves on C × D , where C is the cube category, and D is any small category with an initial object. We then show that the category of presheaves on C × ω provides semantics for GCTT .
AbstractList This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory ( GCTT ), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that CTT can be given semantics in presheaves on C × D , where C is the cube category, and D is any small category with an initial object. We then show that the category of presheaves on C × ω provides semantics for GCTT .
This paper improves the treatment of equality in guarded dependent type theory ((Formula presented.)), by combining it with cubical type theory ((Formula presented.)). (Formula presented.) is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement (Formula presented.) with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. (Formula presented.) is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. (Formula presented.) provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory ((Formula presented.)), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of (Formula presented.) as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that (Formula presented.) can be given semantics in presheaves on (Formula presented.), where (Formula presented.) is the cube category, and (Formula presented.) is any small category with an initial object. We then show that the category of presheaves on (Formula presented.) provides semantics for (Formula presented.).
This paper improves the treatment of equality in guarded dependent type theory (\[\mathsf {GDTT}\]), by combining it with cubical type theory (\[\mathsf {CTT}\]). \[\mathsf {GDTT}\] is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement \[\mathsf {GDTT}\] with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. \[\mathsf {CTT}\] is a variation of Martin–Löf type theory in which the identity type is replaced by abstract paths between terms. \[\mathsf {CTT}\] provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (\[\mathsf {GCTT}\]), provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of \[\mathsf {CTT}\] as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation. We show that \[\mathsf {CTT}\] can be given semantics in presheaves on \[\mathcal {C}\times \mathbb {D}\], where \[\mathcal {C}\] is the cube category, and \[\mathbb {D}\] is any small category with an initial object. We then show that the category of presheaves on \[\mathcal {C}\times \omega \] provides semantics for \[\mathsf {GCTT}\].
Author Grathwohl, Hans Bugge
Vezzosi, Andrea
Birkedal, Lars
Clouston, Ranald
Spitters, Bas
Bizjak, Aleš
Author_xml – sequence: 1
  givenname: Lars
  surname: Birkedal
  fullname: Birkedal, Lars
  organization: Department of Computer Science, Aarhus University
– sequence: 2
  givenname: Aleš
  surname: Bizjak
  fullname: Bizjak, Aleš
  organization: Department of Computer Science, Aarhus University
– sequence: 3
  givenname: Ranald
  surname: Clouston
  fullname: Clouston, Ranald
  organization: Department of Computer Science, Aarhus University
– sequence: 4
  givenname: Hans Bugge
  surname: Grathwohl
  fullname: Grathwohl, Hans Bugge
  organization: Department of Computer Science, Aarhus University
– sequence: 5
  givenname: Bas
  orcidid: 0000-0002-2802-0973
  surname: Spitters
  fullname: Spitters, Bas
  organization: Department of Computer Science, Aarhus University
– sequence: 6
  givenname: Andrea
  surname: Vezzosi
  fullname: Vezzosi, Andrea
  organization: Department of Computer Science and Engineering, Chalmers University of Technology
BackLink https://research.chalmers.se/publication/510847$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kE1r3DAQhkVIIZu0PyDkstCzkxlLsqxjWJoPCOTQ7XkYS-Ouw8beSDZl_30dNiFQaE5zeZ-Xd55TddwPvSh1jnCJAO4qI9ToCsC68MZh4Y7UAq3TBVQOjtUCsKoLZ7Q-Uac5PwGARvALdXE7cYoSl6up6QJvl-v9TpbrjQxp_1V9aXmb5dvbPVO_bn6sV3fFw-Pt_er6oQhG27FgDLFBZ2yomUvvmxacARGBKmjxbDVjWQW2sY661oZRN7bx3gl4aJugz9TPQ2_-I7upoV3qnjntaeCOkmThFDYUNrx9lpQpC4GzpoXSE0ZbkjGhojo0SDp6jlXFNkSZW78fWndpeJkkj_Q0TKmfH6GytEZDZR3OKXdIhTTknKSl0I08dkM_Ju62hECvfungl2a_9OqX3EziP-T77s-Y8u3TOdv_lvSx6f_QX0MYjQc
CitedBy_id crossref_primary_10_1017_S0960129521000311
crossref_primary_10_3390_math10203800
crossref_primary_10_1016_j_jlamp_2022_100846
crossref_primary_10_1017_S0960129521000347
crossref_primary_10_1145_3434283
crossref_primary_10_1145_3704866
crossref_primary_10_1017_S0956796821000034
Cites_doi 10.1215/S0012-7094-37-00334-X
10.1145/2544174.2500597
10.1017/S0004972700022966
10.1017/S0956796807006326
10.1109/LICS.2000.855774
10.1145/1292597.1292608
10.1016/j.entcs.2015.12.007
10.1145/1925844.1926401
10.1007/978-3-319-12736-1_8
10.1109/LICS.2013.27
10.2168/LMCS-8(4:1)2012
10.1007/978-1-4020-5587-4_8
10.1016/S0049-237X(08)71945-1
10.1007/978-1-4471-0963-1
10.1007/3-540-61780-9_66
10.1007/978-1-4757-4721-8
10.1007/978-3-662-46678-0_26
10.1007/978-3-662-49630-5_2
10.1145/2603088.2603132
ContentType Journal Article
Copyright Springer Nature B.V. 2018
Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2018
– notice: Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTPV
AOWAS
F1S
DOI 10.1007/s10817-018-9471-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0670
EndPage 253
ExternalDocumentID oai_research_chalmers_se_0754f029_1d52_44c6_8cb1_3d9ad66a5cde
10_1007_s10817_018_9471_7
GrantInformation_xml – fundername: Villum Fonden
  grantid: 00012386
  funderid: http://dx.doi.org/10.13039/100008398
– fundername: The Danish Council for Independent Research for the Natural Sciences
– fundername: Microsoft (US)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29J
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
L6V
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
7SC
8FD
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c435t-a1cdb1745c8aa299bf0740eee06c3e9a53a126ca5d8d3834a13b5b997e090fbc3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475656400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-7433
1573-0670
IngestDate Wed Nov 05 04:01:01 EST 2025
Tue Nov 04 22:35:24 EST 2025
Tue Nov 18 21:18:17 EST 2025
Sat Nov 29 07:47:00 EST 2025
Fri Feb 21 02:34:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Guarded recursion
Homotopy type theory
Cubical type theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-a1cdb1745c8aa299bf0740eee06c3e9a53a126ca5d8d3834a13b5b997e090fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2802-0973
OpenAccessLink http://www.cs.au.dk/~spitters/TYPES16.pdf
PQID 2254306571
PQPubID 2028908
PageCount 43
ParticipantIDs swepub_primary_oai_research_chalmers_se_0754f029_1d52_44c6_8cb1_3d9ad66a5cde
proquest_journals_2254306571
crossref_citationtrail_10_1007_s10817_018_9471_7
crossref_primary_10_1007_s10817_018_9471_7
springer_journals_10_1007_s10817_018_9471_7
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of automated reasoning
PublicationTitleAbbrev J Autom Reasoning
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Bizjak, A., Møgelberg, R.E.: A model of guarded recursion with clock synchronisation. In: MFPS, pp. 83–101 (2015)
VickersSAielloMPratt-HartmannIEvan BenthemJFAKLocales and toposes as spacesHandbook of Spatial Logics2007BerlinSpringer42949610.1007/978-1-4020-5587-4_8
JohnstonePTSketches of an Elephant: A Topos Theory Compendium2002OxfordOxford University Press1071.18001
Dybjer, P.: Internal type theory. In: TYPES ’95, pp. 120–134 (1996)
Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after Voevodsky). arXiv:1211.2851 (2012)
Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: ICFP, pp. 197–208 (2013)
CloustonRBizjakAGrathwohlHBBirkedalLThe guarded lambda-calculus: programming and reasoning with guarded recursion for coinductive typesLog. Methods Comput. Sci.2016354885606703913
The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations for Mathematics. Institute for Advanced Study (2013)
Huber, S.: Canonicity for cubical type theory. arXiv:1607.04156 (2016)
BirkhoffGRings of setsDuke Math. J.19373344354154600010.1215/S0012-7094-37-00334-X0017.19403
Mac LaneSCategories for the Working Mathematician1978BerlinSpringer10.1007/978-1-4757-4721-80232.18001
Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.: Guarded cubical type theory: path equality for guarded recursion. In: CSL, vol. 3, p. 37 (2016)
Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation of the univalence axiom. In: Post-proceedings of the 21st International Conference on Types for Proofs and Programs, TYPES 2015 (2016)
Hofmann, M., Streicher, T.: Lifting Grothendieck universes. http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf (1999). Accessed 13 June 2018
CornishWFowlerPCoproducts of de Morgan algebrasBull. Aust. Math. Soc.197716111343490710.1017/S00049727000229660329.06005
Møgelberg, R.E.: A type theory for productive coprogramming via guarded recursion. In: CSL-LICS (2014)
Phoa, W.: An introduction to fibrations, topos theory, the effective topos and modest sets. Technical Report ECS-LFCS-92-208, LFCS, University of Edinburgh (1992)
Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types. In: APLAS, pp. 140–158 (2014)
Orton, I., Pitts, A.M.: Axioms for modelling cubical type theory in a topos. In: CSL (2016)
Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded dependent type theory with coinductive types. In: FoSSaCS, pp. 20–35 (2016)
Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: POPL, pp. 119–132 (2011)
Voevodsky, V.: Martin-Lof identity types in the C-systems defined by a universe category. arXiv:1505.06446 (2015)
McBrideCPatersonRApplicative programming with effectsJ. Funct. Program.200818111310.1017/S09567968070063261128.68020
Coquand, T.: Internal version of the uniform Kan filling condition. http://www.cse.chalmers.se/~coquand/shape.pdf (2015). Accessed 13 June 2018
Birkedal, L., Rasmus, E.M.: Intensional type theory with guarded recursive types qua fixed points on universes. In: LICS, pp. 213–222 (2013)
Mac LaneSMoerdijkISheaves in Geometry and Logic1992BerlinSpringer0822.18001
Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Logic Colloquium ’73, pp. 73–118 (1975)
The Coq Development Team: The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0 (2004)
Sacchini, J.L.: Well-founded sized types in the calculus of constructions. In: TYPES 2015 talk (2015) http://cs.ioc.ee/types15/programme-slides.html (2015). Accessed 13 June 2018
Spitters, B.: Cubical sets as a classifying topos. In: TYPES (2015)
Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000)
Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: PLPV, pp. 57–68 (2007)
Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in synthetic guarded domain theory: step-indexing in the topos of trees. In: LMCS, vol. 8, no. 4 (2012)
HofmannMExtensional Constructs in Intensional Type Theory1997BerlinSpringer10.1007/978-1-4471-0963-107048067
Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. Thesis, Chalmers University of Technology (2007)
9471_CR9
S Mac Lane (9471_CR21) 1978
9471_CR18
PT Johnstone (9471_CR19) 2002
W Cornish (9471_CR14) 1977; 16
G Birkhoff (9471_CR8) 1937; 3
R Clouston (9471_CR11) 2016
9471_CR23
9471_CR24
C McBride (9471_CR25) 2008; 18
9471_CR26
9471_CR27
9471_CR28
M Hofmann (9471_CR16) 1997
9471_CR20
9471_CR29
S Mac Lane (9471_CR22) 1992
9471_CR10
9471_CR32
9471_CR33
9471_CR12
9471_CR13
9471_CR35
9471_CR15
9471_CR17
9471_CR1
9471_CR2
9471_CR3
9471_CR4
9471_CR5
9471_CR6
S Vickers (9471_CR34) 2007
9471_CR7
9471_CR30
9471_CR31
References_xml – reference: McBrideCPatersonRApplicative programming with effectsJ. Funct. Program.200818111310.1017/S09567968070063261128.68020
– reference: Mac LaneSMoerdijkISheaves in Geometry and Logic1992BerlinSpringer0822.18001
– reference: Spitters, B.: Cubical sets as a classifying topos. In: TYPES (2015)
– reference: The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations for Mathematics. Institute for Advanced Study (2013)
– reference: Coquand, T.: Internal version of the uniform Kan filling condition. http://www.cse.chalmers.se/~coquand/shape.pdf (2015). Accessed 13 June 2018
– reference: Kapulkin, C., Lumsdaine, P.L.: The simplicial model of univalent foundations (after Voevodsky). arXiv:1211.2851 (2012)
– reference: Phoa, W.: An introduction to fibrations, topos theory, the effective topos and modest sets. Technical Report ECS-LFCS-92-208, LFCS, University of Edinburgh (1992)
– reference: Orton, I., Pitts, A.M.: Axioms for modelling cubical type theory in a topos. In: CSL (2016)
– reference: Voevodsky, V.: Martin-Lof identity types in the C-systems defined by a universe category. arXiv:1505.06446 (2015)
– reference: Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: POPL, pp. 119–132 (2011)
– reference: CornishWFowlerPCoproducts of de Morgan algebrasBull. Aust. Math. Soc.197716111343490710.1017/S00049727000229660329.06005
– reference: VickersSAielloMPratt-HartmannIEvan BenthemJFAKLocales and toposes as spacesHandbook of Spatial Logics2007BerlinSpringer42949610.1007/978-1-4020-5587-4_8
– reference: Bizjak, A., Møgelberg, R.E.: A model of guarded recursion with clock synchronisation. In: MFPS, pp. 83–101 (2015)
– reference: Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types. In: APLAS, pp. 140–158 (2014)
– reference: Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: PLPV, pp. 57–68 (2007)
– reference: Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded dependent type theory with coinductive types. In: FoSSaCS, pp. 20–35 (2016)
– reference: Birkedal, L., Rasmus, E.M.: Intensional type theory with guarded recursive types qua fixed points on universes. In: LICS, pp. 213–222 (2013)
– reference: Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation of the univalence axiom. In: Post-proceedings of the 21st International Conference on Types for Proofs and Programs, TYPES 2015 (2016)
– reference: Dybjer, P.: Internal type theory. In: TYPES ’95, pp. 120–134 (1996)
– reference: Møgelberg, R.E.: A type theory for productive coprogramming via guarded recursion. In: CSL-LICS (2014)
– reference: Mac LaneSCategories for the Working Mathematician1978BerlinSpringer10.1007/978-1-4757-4721-80232.18001
– reference: Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: ICFP, pp. 197–208 (2013)
– reference: Hofmann, M., Streicher, T.: Lifting Grothendieck universes. http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf (1999). Accessed 13 June 2018
– reference: Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Logic Colloquium ’73, pp. 73–118 (1975)
– reference: JohnstonePTSketches of an Elephant: A Topos Theory Compendium2002OxfordOxford University Press1071.18001
– reference: HofmannMExtensional Constructs in Intensional Type Theory1997BerlinSpringer10.1007/978-1-4471-0963-107048067
– reference: CloustonRBizjakAGrathwohlHBBirkedalLThe guarded lambda-calculus: programming and reasoning with guarded recursion for coinductive typesLog. Methods Comput. Sci.2016354885606703913
– reference: The Coq Development Team: The Coq proof assistant reference manual. LogiCal Project, 2004. Version 8.0 (2004)
– reference: Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. Thesis, Chalmers University of Technology (2007)
– reference: Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H.B., Spitters, B., Vezzosi, A.: Guarded cubical type theory: path equality for guarded recursion. In: CSL, vol. 3, p. 37 (2016)
– reference: Huber, S.: Canonicity for cubical type theory. arXiv:1607.04156 (2016)
– reference: Sacchini, J.L.: Well-founded sized types in the calculus of constructions. In: TYPES 2015 talk (2015) http://cs.ioc.ee/types15/programme-slides.html (2015). Accessed 13 June 2018
– reference: Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000)
– reference: Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in synthetic guarded domain theory: step-indexing in the topos of trees. In: LMCS, vol. 8, no. 4 (2012)
– reference: BirkhoffGRings of setsDuke Math. J.19373344354154600010.1215/S0012-7094-37-00334-X0017.19403
– volume: 3
  start-page: 443
  issue: 3
  year: 1937
  ident: 9471_CR8
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-37-00334-X
– ident: 9471_CR3
  doi: 10.1145/2544174.2500597
– volume: 16
  start-page: 1
  issue: 1
  year: 1977
  ident: 9471_CR14
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700022966
– volume-title: Sheaves in Geometry and Logic
  year: 1992
  ident: 9471_CR22
– ident: 9471_CR17
– volume: 18
  start-page: 1
  issue: 1
  year: 2008
  ident: 9471_CR25
  publication-title: J. Funct. Program.
  doi: 10.1017/S0956796807006326
– ident: 9471_CR27
  doi: 10.1109/LICS.2000.855774
– ident: 9471_CR13
– ident: 9471_CR2
  doi: 10.1145/1292597.1292608
– ident: 9471_CR32
– ident: 9471_CR9
  doi: 10.1016/j.entcs.2015.12.007
– ident: 9471_CR30
– ident: 9471_CR28
– ident: 9471_CR5
  doi: 10.1145/1925844.1926401
– ident: 9471_CR1
  doi: 10.1007/978-3-319-12736-1_8
– ident: 9471_CR4
  doi: 10.1109/LICS.2013.27
– ident: 9471_CR7
– volume-title: Sketches of an Elephant: A Topos Theory Compendium
  year: 2002
  ident: 9471_CR19
– ident: 9471_CR20
– ident: 9471_CR24
– ident: 9471_CR18
– ident: 9471_CR6
  doi: 10.2168/LMCS-8(4:1)2012
– start-page: 429
  volume-title: Handbook of Spatial Logics
  year: 2007
  ident: 9471_CR34
  doi: 10.1007/978-1-4020-5587-4_8
– ident: 9471_CR12
– ident: 9471_CR23
  doi: 10.1016/S0049-237X(08)71945-1
– volume-title: Extensional Constructs in Intensional Type Theory
  year: 1997
  ident: 9471_CR16
  doi: 10.1007/978-1-4471-0963-1
– ident: 9471_CR33
– ident: 9471_CR15
  doi: 10.1007/3-540-61780-9_66
– volume-title: Categories for the Working Mathematician
  year: 1978
  ident: 9471_CR21
  doi: 10.1007/978-1-4757-4721-8
– ident: 9471_CR29
– ident: 9471_CR31
– ident: 9471_CR35
– year: 2016
  ident: 9471_CR11
  publication-title: Log. Methods Comput. Sci.
  doi: 10.1007/978-3-662-46678-0_26
– ident: 9471_CR10
  doi: 10.1007/978-3-662-49630-5_2
– ident: 9471_CR26
  doi: 10.1145/2603088.2603132
SSID ssj0003109
Score 2.3196266
Snippet This paper improves the treatment of equality in guarded dependent type theory ( GDTT ), by combining it with cubical type theory ( CTT ). GDTT is an...
This paper improves the treatment of equality in guarded dependent type theory (\[\mathsf {GDTT}\]), by combining it with cubical type theory (\[\mathsf...
This paper improves the treatment of equality in guarded dependent type theory ((Formula presented.)), by combining it with cubical type theory ((Formula...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Artificial Intelligence
Computation
Computer Science
Cubical type theory
Guarded recursion
Homotopy type theory
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Number theory
Semantics
Symbolic and Algebraic Manipulation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQPkVpQRmYQBGxEyfxhFBFxVBVSIDUzbLPjoqE2tK0_H7OidMKhi7MSRzrfL67Z9-9I-TGImZAPYGwYDEgQIl4mHOWhlZxhYgoE1BUPLPDbDTKx2Px4g_cSp9W2djEylCbGbgz8nvmqrbRX2b0Yf4Vuq5R7nbVt9DYJXuOJYFWqXuva0vsWC9rbm_HmRnHza1mXTqXU5d0idsd7XOY_fZLm2BzfT_6h0u08j-D9n9nfkQOfeQZPNaqckx27PSEtJuuDoHf5KekW2mNNUF_pd0KBg6qBnUN_xl5Hzy99Z9D30IhBIyDlqGiYDSCDg65Uuh5dIEhQ2StjVKIrVA8VpSloLjJDWLVRNFYcy1EZiMRFRric9Kazqb2ggQFM0wXgJjN2iRFkbqa2pRREFwzbUyHRI0AJXh-cdfm4lNumJGdzCXKXDqZy6xDbtefzGtyjW0v9xrxSr_PSrmRbYfcNSu1ebxlsGG9mOv_Opptz680kTCpmteUsrQSY6qkiJiQ1HAmkwRSmYOmMjZCmTRVHIy93D63LjnAOEvUeYM90louVvaK7MP38qNcXFc6-wOSPO68
  priority: 102
  providerName: ProQuest
Title Guarded Cubical Type Theory
URI https://link.springer.com/article/10.1007/s10817-018-9471-7
https://www.proquest.com/docview/2254306571
https://research.chalmers.se/publication/510847
Volume 63
WOSCitedRecordID wos000475656400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003109
  issn: 1573-0670
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ynr6tKDJ6XQpk3bHFVcBGVZfLF4CckkRUFW2e76-530sasigl56aZs2ySTzfWTmG4AjS5yB7AT9nEVIBCXgfsZZ4lvFFTGiVGBe6sxep4NBNhqJYZ3HXTTR7s2RZLlTf0p2y0IXJkkLlHZUP12GFfJ2mavXcHP7MN9-ndRlJejthDKjqDnK_KmJr85ogTDnh6LfBERLp9Nv_-t3N2C9xpjeaWUUm7Bkx1vQbuo3ePVy3oZuaR_WeOcz7ebKc6TUq7L1d-C-f3F3funXxRJ8JMQz9VWIRhO94JgpRT5G5wQOAmttkGBkheKRClmCipvMECuNVRhproVIbSCCXGO0C63x69jugZczw3SOxM6sjRMaR5c9m7AQBddMG9OBoBk1ibWSuCto8SIXGsiu85I6L13nZdqB4_krb5WMxm8PHzRTIesVVUjmsvYJL6VhB06aEV_c_qWx62oG5991gtq1ktKTxKeyTE0hCysJPcV5wIQMDWcyjjGRGepQRkYokySKo7H7f_p4F9YIYIkqYPAAWtPJzB7CKr5Pn4tJD1bOLgbDmx4sX6V-z0Wd3tJ1yB97pUV_AIhy6LQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkuBS3uoWCjmUSyuLxImT-IAQ4iHQblccqMTN2GNHIFULbHZB_VP9jYzz2FV72BsHzkkcJ988bc83AN8c5QwkJ8gKHiMlKKFgueApc1poyogyiUXFM9vL-v389lZez8HfthbGH6tsbWJlqO0j-jXyQ-6rtslfZtHx0zPzXaP87mrbQqMWi67780opW3l0dUb4HnB-cX5zesmargIMKTQYMR2hNRSHC8y1JmNsCvKioXMuTDF2UotYRzxFLWxuKX1LdBQbYaTMXCjDwmBM487DYkIf4vWqm7GJ5fcsmzWXuOfojON2F7Uu1csjf8iTzAv5A5b96wenwe1kP_Y_7tLK312sfrQ_tQafmsg6OKlVYR3m3GADVtuuFUFjxDZhp9IKZ4PTsfESGvhUPKg5Crbg17tMcRsWBo8D9xmCgltuCqSc1LkkJQh9zXDKI5TCcGNtB8IWMIUNf7pv4_FbTZmfPcaKMFYeY5V14PvkkaeaPGTWzbstnKqxI6WaYtmBH61kTC_PGKxXC8_kvZ5GvOGPuld4XzXnKVXpFMWMSRFyqSIruEoSTFWOJlKxldqmqRZo3ZfZc9uH5cubnz3Vu-p3d2CFYkpZn5HchYXRcOy-whK-jB7K4V6lLwHcvbfYvQFU50yp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB1RqKpeGkqLmgaoD3BpZWGvvbb3gBAKRKBEUQ5UQr1sd2fXChJK0ji06l_j1zHrj0RwyI0DZ9vrld_szDzv7BuAQ0ucgewE_ZxFSAQl4H7GWeJbxRUxolRgXurMDtLhMLu5EaMNeGjOwriyysYnlo7aTNH9Iz9m7tQ2xcs0PM7rsojRee909sd3HaTcTmvTTqMykb79_4_oW3FydU5YHzHWu7juXvp1hwEfKU1Y-CpEoykn55gpRY5Z5xRRA2ttkGBkheKRClmCipvMEJWLVRhproVIbSCCXGNE476BrZQ4pisnHPFfyyjgFDcrXXGn1xlFzY5qdWwvC13BJ7kaig1--jQmrhLd5d7sMx3TMvb1Wq_5q23Dhzrj9s6qJfIRNuxkB1pNNwuvdm6foFOuFmu87r12lus5iu5V2gWf4eeLTHEXNifTif0CXs4M0zkSV7U2TghOd5Y4YSEKrpk2pg1BA57EWlfdtfe4kytFaIe3JLylw1umbfi-fGRWiYqsu3mvgVbW_qWQK1zb8KOxktXlNYMNKkNavtfJi9e6UmOJ47JpTyELKymXjPOACRkazmQcYyIz1KGMjFAmSRRHY7-un9s3eEfWJgdXw34H3lOqKarSyT3YXMzv7T68xb-L22J-UC4dD36_tNU9AvqrVc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guarded+Cubical+Type+Theory&rft.jtitle=Journal+of+automated+reasoning&rft.au=Birkedal%2C+Lars&rft.au=Bizjak%2C+Ale%C5%A1&rft.au=Clouston%2C+Ranald&rft.au=Grathwohl%2C+Hans+Bugge&rft.date=2019-08-01&rft.issn=1573-0670&rft.volume=63&rft.issue=2&rft.spage=211&rft_id=info:doi/10.1007%2Fs10817-018-9471-7&rft.externalDocID=oai_research_chalmers_se_0754f029_1d52_44c6_8cb1_3d9ad66a5cde
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-7433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-7433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-7433&client=summon