On weighting clustering

Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an anal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 28; číslo 8; s. 1223 - 1235
Hlavní autoři: Nock, R., Nielsen, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.08.2006
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, expectation maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering
AbstractList Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, expectation maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering
Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, Expectation Maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering.Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, Expectation Maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering.
Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, Expectation Maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering.
Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k{-}rm means, fuzzy c{-}rm means, Expectation Maximization (EM), and k{-}rm harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering.
[...] we handle clustering as a constrained minimization of a Bregman divergence.
Author Nock, R.
Nielsen, F.
Author_xml – sequence: 1
  givenname: R.
  surname: Nock
  fullname: Nock, R.
  organization: Departement Sci. Inter-facultaire, Univ. Antilles-Guyane, Martinique
– sequence: 2
  givenname: F.
  surname: Nielsen
  fullname: Nielsen, F.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17935108$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16886859$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLAzEQB_AgitbHVQ-CFEHxsnWSbF5HKb5AqQc9hzRNNLLd1WQX8dub2vpAUE_J4fefyWTW0XLd1A6hbQwDjEEd396cXF8OCAAfYC6XUI9gDoUiiiyjHmBOCimJXEPrKT0C4JIBXUVrmUoumeqhnVHdf3Hh_qEN9X3fVl1qXczXTbTiTZXc1uLcQHdnp7fDi-JqdH45PLkqbEnLthhPQHhJiB8zzyeCWOYn4EnphSeMcGqdwECNgdwXvJeWWywoqLEtLfVe0Q10OK_7FJvnzqVWT0OyrqpM7ZouaS4FJkLCv5BI4IxKnOHRnxDzXJGCkCLT_R_0selinefVkjNBqVIso70F6sZTN9FPMUxNfNUff5jBwQKYZE3lo6ltSF9OKMowyOzKubOxSSk6r21oTRuauo0mVBqDnq1Uv69Uz1Y665Fjgx-xz8q_BXbngeCc-_bcknAm6RtPeKco
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s13198_014_0266_x
crossref_primary_10_1016_j_ecolind_2018_09_059
crossref_primary_10_1007_s11269_014_0817_6
crossref_primary_10_1007_s10462_016_9477_7
crossref_primary_10_1109_TSMCA_2011_2157127
crossref_primary_10_1016_j_patcog_2007_03_026
crossref_primary_10_1007_s11042_020_09718_4
crossref_primary_10_1007_s10489_016_0844_5
crossref_primary_10_1016_j_ejfs_2014_03_004
crossref_primary_10_1016_j_patcog_2010_06_013
crossref_primary_10_1088_1757_899X_1074_1_012020
crossref_primary_10_1186_1532_429X_15_32
crossref_primary_10_1109_TPAMI_2021_3056510
crossref_primary_10_1109_TMI_2023_3263465
crossref_primary_10_1016_j_eswa_2008_11_017
crossref_primary_10_1109_TKDE_2009_174
crossref_primary_10_1016_j_ins_2008_02_003
crossref_primary_10_1109_TEVC_2016_2524555
crossref_primary_10_1016_j_patcog_2024_111195
crossref_primary_10_1016_j_neucom_2010_07_015
crossref_primary_10_1016_j_fss_2008_11_012
crossref_primary_10_1080_21681163_2015_1027270
crossref_primary_10_1016_j_neucom_2014_05_078
crossref_primary_10_1016_j_patcog_2007_03_009
crossref_primary_10_1080_13658816_2014_913794
crossref_primary_10_1007_s00438_014_0949_7
crossref_primary_10_1080_0952813X_2016_1199601
crossref_primary_10_1109_TIFS_2013_2249065
crossref_primary_10_1016_j_physleta_2018_12_005
crossref_primary_10_1002_col_22151
crossref_primary_10_1109_JSTARS_2015_2443552
crossref_primary_10_1016_j_comcom_2018_07_015
crossref_primary_10_1007_s10479_017_2742_6
crossref_primary_10_4304_jmm_7_2_179_192
crossref_primary_10_1016_j_ins_2014_04_005
crossref_primary_10_1016_j_nima_2012_04_023
crossref_primary_10_1016_j_scijus_2014_04_005
crossref_primary_10_1016_j_cie_2019_03_012
crossref_primary_10_1016_j_ins_2013_03_007
crossref_primary_10_1118_1_4736977
crossref_primary_10_32604_cmc_2022_023947
crossref_primary_10_1016_j_ijepes_2020_106242
crossref_primary_10_1016_j_ins_2020_03_095
crossref_primary_10_1109_TII_2013_2240309
crossref_primary_10_1109_TII_2013_2257804
crossref_primary_10_1097_JS9_0000000000001335
crossref_primary_10_1109_JSTARS_2025_3532018
crossref_primary_10_3390_f7100243
crossref_primary_10_1080_01431161_2014_978956
crossref_primary_10_7305_automatika_2016_10_1427
crossref_primary_10_1016_j_engappai_2015_03_016
crossref_primary_10_1016_j_neucom_2007_05_009
crossref_primary_10_1109_ACCESS_2018_2881230
crossref_primary_10_1016_j_imavis_2014_10_013
crossref_primary_10_1016_j_devcel_2014_07_022
crossref_primary_10_3233_IFS_151811
crossref_primary_10_1145_3490384
crossref_primary_10_1016_j_camwa_2011_07_005
crossref_primary_10_1109_TNNLS_2024_3373532
crossref_primary_10_1016_j_artint_2006_10_014
crossref_primary_10_1109_TCYB_2018_2817480
crossref_primary_10_1016_j_fss_2015_10_005
crossref_primary_10_1155_2012_491237
crossref_primary_10_1109_TIT_2008_929943
crossref_primary_10_1007_s13369_014_1037_3
crossref_primary_10_1007_s00500_018_3514_1
crossref_primary_10_1016_j_apenergy_2016_03_038
crossref_primary_10_1007_s11042_022_12126_5
crossref_primary_10_1016_j_knosys_2012_07_018
crossref_primary_10_1016_j_palaeo_2014_05_005
crossref_primary_10_1007_s11192_012_0691_z
crossref_primary_10_1111_ejn_13140
crossref_primary_10_1007_s11135_014_9992_z
crossref_primary_10_1016_j_ijepes_2015_11_077
crossref_primary_10_1016_j_compbiomed_2015_02_015
crossref_primary_10_1109_ACCESS_2024_3496929
crossref_primary_10_1016_j_patcog_2009_04_013
crossref_primary_10_1016_j_physa_2016_05_041
crossref_primary_10_1109_ACCESS_2022_3167031
crossref_primary_10_1007_s11277_021_09083_x
crossref_primary_10_1109_TIP_2013_2262289
crossref_primary_10_1016_j_enconman_2013_04_025
crossref_primary_10_1007_s11460_012_0179_x
crossref_primary_10_1007_s10115_016_0988_y
crossref_primary_10_1038_ncomms14109
crossref_primary_10_1109_TGRS_2023_3262727
crossref_primary_10_3390_ijerph19106046
crossref_primary_10_1093_femsyr_fow096
crossref_primary_10_1371_journal_pone_0180268
crossref_primary_10_1016_j_compbiomed_2013_09_016
crossref_primary_10_1016_j_eswa_2008_01_036
crossref_primary_10_15252_msb_20156170
crossref_primary_10_1155_2021_9965813
crossref_primary_10_1016_j_ins_2017_07_036
crossref_primary_10_1016_j_patcog_2008_09_027
crossref_primary_10_1109_TFUZZ_2008_924331
crossref_primary_10_1177_0165551512456502
crossref_primary_10_1007_s11042_022_12412_2
crossref_primary_10_1016_j_media_2016_06_019
crossref_primary_10_1145_2668111
crossref_primary_10_1109_RBME_2016_2515127
crossref_primary_10_1016_j_asoc_2017_05_018
crossref_primary_10_1016_j_neucom_2016_12_037
crossref_primary_10_1186_1471_2105_14_S13_S10
crossref_primary_10_1016_j_cad_2013_08_019
crossref_primary_10_1016_j_ins_2015_05_007
crossref_primary_10_1109_TPAMI_2023_3337195
Cites_doi 10.1007/978-1-4757-0450-1
10.2307/2984875
10.1137/1.9781611972740.22
10.1145/307400.307424
10.1006/jcss.1997.1504
10.1007/978-1-4612-0711-5
10.1145/584792.584890
10.1093/oso/9780198526155.003.0025
10.1145/279943.279960
10.1109/ICPR.2004.1334105
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2006.168
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

MEDLINE
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1235
ExternalDocumentID 2343239621
16886859
17935108
10_1109_TPAMI_2006_168
1642658
Genre orig-research
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c434t-bd07f822fb5f6d72c5fd0f24f7f25263ce7103aa05030ff8c6c17309bc4c3ff93
IEDL.DBID RIE
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238162400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Thu Oct 02 20:16:41 EDT 2025
Sun Nov 09 09:22:08 EST 2025
Thu Oct 02 18:02:04 EDT 2025
Sun Oct 05 00:29:15 EDT 2025
Wed Feb 19 01:52:53 EST 2025
Mon Jul 21 09:18:08 EDT 2025
Sat Nov 29 08:09:45 EST 2025
Tue Nov 18 21:01:02 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Fuzzy logic
fuzzy k-means
Bregman divergences
harmonic means clustering
k-means
K means algorithm
expectation maximization
Clustering
EM algorithm
Pattern analysis
Unsupervised learning
Constrained optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-bd07f822fb5f6d72c5fd0f24f7f25263ce7103aa05030ff8c6c17309bc4c3ff93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16886859
PQID 865733995
PQPubID 23500
PageCount 13
ParticipantIDs pubmed_primary_16886859
crossref_citationtrail_10_1109_TPAMI_2006_168
proquest_miscellaneous_68712780
crossref_primary_10_1109_TPAMI_2006_168
ieee_primary_1642658
proquest_miscellaneous_28065381
proquest_journals_865733995
pascalfrancis_primary_17935108
proquest_miscellaneous_1671230787
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2006
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref20
Kearns (ref5) 1988
ref10
ref2
Kearns (ref16)
Attias (ref19) 1999
ref8
ref7
Budimir (ref17) 2000; 3
ref4
ref3
ref6
Gentile (ref1)
Zhang (ref12) 2000
McQueen (ref13)
Zhang (ref11) 2000
Devroye (ref18) 1996
Zhang (ref9) 2000
References_xml – ident: ref14
  doi: 10.1007/978-1-4757-0450-1
– start-page: 282
  volume-title: Proc. 13th Int’l Conf. Uncertainty in Artificial Intelligence
  ident: ref16
  article-title: An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering
– ident: ref15
  doi: 10.2307/2984875
– ident: ref7
  doi: 10.1137/1.9781611972740.22
– volume: 3
  year: 2000
  ident: ref17
  article-title: Further Reverse Results for Jensen’s Discrete Inequality and Applications in Information Theory
  publication-title: J. Inequalities in Pure and Applied Math.
– year: 1988
  ident: ref5
  article-title: Thoughts on Hypothesis Boosting
– year: 2000
  ident: ref12
  article-title: Harmonic Average Based Clustering Method and System
– ident: ref3
  doi: 10.1145/307400.307424
– ident: ref6
  doi: 10.1137/1.9781611972740.22
– ident: ref2
  doi: 10.1006/jcss.1997.1504
– start-page: 281
  volume-title: Proc. Fifth Berkeley Symp. Math. Statistics and Probability
  ident: ref13
  article-title: Some Methods for Classification and Analysis of Multivariate Observations
– year: 2000
  ident: ref9
  article-title: Generalized $k \hbox{-}\rm Harmonic$ Means
– start-page: 31
  year: 2000
  ident: ref11
  article-title: $k \hbox{-}\rm Harmonic$ Means—A Spatial Clustering Algorithm with Boosting
  publication-title: Temporal, Spatial, and Spatio-Temporal Data Mining
– volume-title: A Probabilistic Theory of Pattern Recognition
  year: 1996
  ident: ref18
  doi: 10.1007/978-1-4612-0711-5
– ident: ref8
  doi: 10.1145/584792.584890
– start-page: 209
  year: 1999
  ident: ref19
  article-title: A Variational Bayesian Framework for Graphical Models
  publication-title: Advances in Neural Information Processing Systems 12
– ident: ref20
  doi: 10.1093/oso/9780198526155.003.0025
– volume-title: Proc. Tutorials 13th Int’l Conf. Computational Learning Theory
  ident: ref1
  article-title: Proving Relative Loss Bounds for On-Line Learning Algorithms Using Bregman Divergences
– ident: ref4
  doi: 10.1145/279943.279960
– ident: ref10
  doi: 10.1109/ICPR.2004.1334105
SSID ssj0014503
Score 2.3106058
Snippet Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via...
[...] we handle clustering as a constrained minimization of a Bregman divergence.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1223
SubjectTerms Algorithm design and analysis
Algorithms
Analogies
Applied sciences
Artificial Intelligence
Boosting
Bregman divergences
Cluster Analysis
Clustering
Clustering algorithms
Clusters
Computer science; control theory; systems
Computer Simulation
Design methodology
Displays
Exact sciences and technology
expectation maximization
Fuzzy
fuzzy k\hbox{-}\rm means
harmonic means clustering
Information Storage and Retrieval - methods
Intelligence
Iterative algorithms
k\hbox{-}\rm means
Learning and adaptive systems
Maximization
Minimization methods
Models, Statistical
Pattern analysis
Pattern Recognition, Automated - methods
Studies
Tail
Taylor series
Unsupervised learning
Title On weighting clustering
URI https://ieeexplore.ieee.org/document/1642658
https://www.ncbi.nlm.nih.gov/pubmed/16886859
https://www.proquest.com/docview/865733995
https://www.proquest.com/docview/1671230787
https://www.proquest.com/docview/28065381
https://www.proquest.com/docview/68712780
Volume 28
WOSCitedRecordID wos000238162400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYAcYDDDu8tsEORkLhQJm3SJD2i1aJF4nUAaW5VJ40lJNRBzAz8fZyk81hp58CtVawqdezYjh1_AGfaZKmtGUtEnWMiOKYJmSFMrOW1yFHaFD1qya26v9f9fvG4AhezuzDWWl98Zi_do8_l10MzcUdlPXLtM7KYq7CqlAx3tWYZA5F7FGTyYEjDKYxoGzSmrOg9PV7d3YS8Qyo9QJ_UWmrXnnTBFnlwFVcaWY2IOxhgLZb7nd7-XHe-N_Mt-NH6mfFVEIxtWLHNDnSmGA5xq9I7sLnQkHAXDh6a-NMfltJrbF4nro0CPe7B8_Wfp99_kxY6ITGCi3EyqJlCx_QB8btWmcmxZpgJVJjlmeTGkmfBq8p1g2GI2kiTkq4XAyMMRyz4Pqw1w8b-hBg1KTV5TVZJJrglf9K6ui8UecUpeswjSKZMLE3bV9zBW7yWPr5gRen57_AuZUmcj-B8Rv8WOmospdx1nJxTBSZG0P1njebjtNfQFkMER9NFK1uNHJVaus6PRUHzPZ2Nkiq5_EjV2OFkRN9XqauL1yqCkyU0PhFNXs5yCkkhaKY0i-AgyMvC_IPYHf7_v45gI5zvuOrCY1gbv0_sL1g3H-OX0XuXZL6vu17mvwC7JPnt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT_MwDLf4AOmDA-9HeRYJiQuFtEnT9IgQCMQYHIbErerSWEJCHWIb_Ps4STeGxA7cWsWqUseO7djxD-BY6SQ2FWORqFKMBMc4IjOEkTG8EilKE6NDLWll7bZ6fs4fZ-B0fBfGGOOKz8yZfXS5_Kqnh_ao7Jxc-4Qs5j-YS4VImL-tNc4ZiNThIJMPQzpOgUTTojFm-Xnn8eL-1mceYukg-qRSUtkGpRPWyMGr2OLIsk_8QQ9sMd3zdBboevlvc1-BpcbTDC-8aKzCjKnXYHmE4hA2Sr0GixMtCddh66EOP91xKb2G-nVoGynQ4wY8XV91Lm-iBjwh0oKLQdStWIaW7V3ieJUlOsWKYSIwwyRNJNeGfAtelrYfDENUWuqYtD3vaqE5Ys43Ybbu1WYbQlSk1uQ3mUwywQ15lMZWfqFIS07xYxpANGJioZvO4hbg4rVwEQbLC8d_i3gpC-J8ACdj-jffU2Mq5brl5DeVZ2IABz_W6HucdhvaZIhgd7RoRaOT_UJJ2_sxz2m-R-NRUiabISlr0xv26ftZbCvjVRbA4RQal4omP2c6haQgNMkUC2DLy8vE_L3Y7fz-X4fw_6Zz3ypat-27XVjwpz221nAPZgfvQ7MP8_pj8NJ_P3CS_wX62vxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+weighting+clustering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Nock%2C+R.&rft.au=Nielsen%2C+F.&rft.date=2006-08-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=28&rft.issue=8&rft.spage=1223&rft.epage=1235&rft_id=info:doi/10.1109%2FTPAMI.2006.168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2006_168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon