On weighting clustering
Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an anal...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 28; H. 8; S. 1223 - 1235 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Los Alamitos, CA
IEEE
01.08.2006
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as k-means, fuzzy c-means, expectation maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms, with a readily available code. They display the advantages that subtle data reweighting may bring to clustering |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0162-8828 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2006.168 |