A Granulation Strategy-Based Algorithm for Computing Strongly Connected Components in Parallel

Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 12; číslo 11; s. 1723
Hlavní autoři: He, Huixing, Xu, Taihua, Chen, Jianjun, Cui, Yun, Song, Jingjing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2024
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were devised to improve the efficiency of computing SCCs. Firstly, four SCC correlations between the vertices were found, which can be divided into two classes. Secondly, two granulation strategies were designed based on correlations between two classes of SCCs. Thirdly, according to the characteristics of the granulation results, the parallelization of computing SCCs was realized. Finally, a parallel algorithm based on granulation strategy for computing SCCs of simple digraphs named GPSCC was proposed. Experimental results show that GPSCC performs with higher computational efficiency than algorithms.
AbstractList Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based computing. Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In this paper, two new granulation strategies were devised to improve the efficiency of computing SCCs. Firstly, four SCC correlations between the vertices were found, which can be divided into two classes. Secondly, two granulation strategies were designed based on correlations between two classes of SCCs. Thirdly, according to the characteristics of the granulation results, the parallelization of computing SCCs was realized. Finally, a parallel algorithm based on granulation strategy for computing SCCs of simple digraphs named GPSCC was proposed. Experimental results show that GPSCC performs with higher computational efficiency than algorithms.
Audience Academic
Author He, Huixing
Xu, Taihua
Chen, Jianjun
Cui, Yun
Song, Jingjing
Author_xml – sequence: 1
  givenname: Huixing
  surname: He
  fullname: He, Huixing
– sequence: 2
  givenname: Taihua
  surname: Xu
  fullname: Xu, Taihua
– sequence: 3
  givenname: Jianjun
  surname: Chen
  fullname: Chen, Jianjun
– sequence: 4
  givenname: Yun
  surname: Cui
  fullname: Cui, Yun
– sequence: 5
  givenname: Jingjing
  surname: Song
  fullname: Song, Jingjing
BookMark eNptkU1vGyEQhldVKjVNc-sPWKnXbrIs2CxH12rTSJESqe21aPjaYLHgAj7433ccV0kaBQ6M3nnmZWDeNycxRds0H0l_QanoL2eo92QghPCBvmlOh2HgHcfEybP4XXNeyqbHJQgdmThtfq_aqwxxF6D6FNsfNUO10777AsWadhWmlH29n1uXcrtO83ZXfZwOWIpT2KMUo9UV0UMSG4q1tD62d5AhBBs-NG8dhGLP_51nza9vX3-uv3c3t1fX69VNpxlltQPsiIC2wKwgjPdKU0McG-3AFEpcm9EQstQ9s8o4UJwtxEIprrlWauScnjXXR1-TYCO32c-Q9zKBlw9CypOEXL0OVo4C1JLRwY1LxzAWZnCkHxcLio4WDHp9Onptc_qzs6XKTdrliO1L2i85I5wI-kRNgKY-uoRfp2dftFxxwUWPIEHq4hUKt7Gz1_hfzqP-X8HnY4HOqZRs3eNjSC8Pc5bP54z48ALXvj6MEu_x4fWiv58ErOE
CitedBy_id crossref_primary_10_1007_s12190_024_02201_5
crossref_primary_10_1007_s12190_025_02477_1
Cites_doi 10.1016/j.ijar.2019.12.001
10.1109/TKDE.2021.3138994
10.1137/20M1312149
10.1109/TNNLS.2023.3300916
10.1016/j.ins.2024.120403
10.1016/j.knosys.2023.110821
10.1145/3543542
10.1016/j.asoc.2023.110458
10.1007/BF00121128
10.1007/s10462-022-10177-6
10.1109/ACCESS.2021.3077409
10.1016/j.ins.2016.01.065
10.1007/978-1-84800-998-1
10.1109/TKDE.2023.3237833
10.1109/TFUZZ.2022.3173684
10.1109/TCYB.2021.3054593
10.1109/FOCS46700.2020.00108
10.1007/978-3-540-70952-7
10.1007/3-540-45591-4
10.1109/TCYB.2020.2964011
10.1016/j.eswa.2021.116390
10.3390/e24081154
10.1109/TCYB.2023.3257274
10.1137/0201010
10.1016/j.knosys.2019.105301
10.1145/2851141.2851161
10.1016/j.knosys.2018.06.009
10.1016/j.ijar.2018.09.005
10.1007/s41066-019-00204-3
10.1016/j.ejor.2019.08.030
10.1007/s10489-023-05123-0
10.1016/j.knosys.2018.02.038
10.1109/TFUZZ.2023.3287834
10.3934/mbe.2024116
10.1007/s00453-018-0452-3
10.1016/j.parco.2017.11.001
10.1093/logcom/exp003
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math12111723
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_89ab6432f86f49ab9d2f1085535bbead
A797907411
10_3390_math12111723
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c434t-a0001acea4e91470bc3d1f48e24b4e97cd8d116c04ebdfab74595bb7c7cbb8773
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245539500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:02:52 EDT 2025
Fri Jul 25 12:07:52 EDT 2025
Tue Nov 11 10:57:32 EST 2025
Tue Nov 04 18:17:02 EST 2025
Tue Nov 18 20:46:56 EST 2025
Sat Nov 29 07:20:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c434t-a0001acea4e91470bc3d1f48e24b4e97cd8d116c04ebdfab74595bb7c7cbb8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3067417193?pq-origsite=%requestingapplication%
PQID 3067417193
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_89ab6432f86f49ab9d2f1085535bbead
proquest_journals_3067417193
gale_infotracmisc_A797907411
gale_infotracacademiconefile_A797907411
crossref_primary_10_3390_math12111723
crossref_citationtrail_10_3390_math12111723
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_18) 2024; 54
Wang (ref_33) 2023; 56
Baswana (ref_3) 2019; 81
Zhang (ref_32) 2023; 53
Chen (ref_9) 2018; 78
Yao (ref_19) 2018; 103
ref_12
Zhang (ref_24) 2023; 35
ref_10
Wang (ref_26) 2022; 30
Fu (ref_35) 2020; 193
Wu (ref_21) 2024; 32
Chen (ref_23) 2021; 9
Ji (ref_17) 2022; 9
Laarman (ref_14) 2011; Volume 6996
Li (ref_22) 2024; 665
ref_39
ref_16
ref_38
ref_15
Du (ref_37) 2022; 192
Labella (ref_30) 2018; 159
Courcoubetis (ref_13) 1992; 1
Aggarwal (ref_28) 2023; 144
Liang (ref_29) 2016; 345
Yan (ref_36) 2023; 278
Bernstein (ref_5) 2023; 52
Cheng (ref_8) 2022; 49
Xu (ref_6) 2018; 149
Barnat (ref_11) 2011; 21
Labella (ref_31) 2020; 281
Hua (ref_34) 2024; 21
ref_40
Tarjan (ref_1) 1972; 1
Guo (ref_25) 2022; 52
ref_2
Xu (ref_7) 2020; 118
Han (ref_27) 2022; 52
Cheng (ref_20) 2021; 6
Wan (ref_4) 2023; 35
Davis (ref_41) 2011; 38
References_xml – volume: 118
  start-page: 64
  year: 2020
  ident: ref_7
  article-title: Finding strongly connected components of simple digraphs based on granulation strategy
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.12.001
– volume: 35
  start-page: 3794
  year: 2023
  ident: ref_4
  article-title: Efficient semi-external SCC computation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3138994
– volume: 49
  start-page: 97
  year: 2022
  ident: ref_8
  article-title: The algorithm for finding strongly connected components based on k-step search of vertex granule and rough set theory
  publication-title: Comput. Sci.
– volume: 52
  start-page: 128
  year: 2023
  ident: ref_5
  article-title: Decremental strongly connected components and single-source reachability in near-linear time
  publication-title: SIAM J. Comput.
  doi: 10.1137/20M1312149
– ident: ref_38
  doi: 10.1109/TNNLS.2023.3300916
– volume: 665
  start-page: 120403
  year: 2024
  ident: ref_22
  article-title: Granular structure evaluation and selection based on justifiable granularity principle
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120403
– volume: Volume 6996
  start-page: 321
  year: 2011
  ident: ref_14
  article-title: Multi-core nested depth-first search
  publication-title: Automated Technology for Verification and Analysis, Proceedings of the 9th International Symposium, ATVA 2011, Taipei, Taiwan, 11–14 October 2011
– volume: 278
  start-page: 110821
  year: 2023
  ident: ref_36
  article-title: Learning node representation via motif coarsening
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110821
– volume: 38
  start-page: 1
  year: 2011
  ident: ref_41
  article-title: The university of florida sparse matrix collection
  publication-title: ACM Trans. Math. Softw. (TOMS)
– volume: 9
  start-page: 1
  year: 2022
  ident: ref_17
  article-title: ispan: Parallel identification of strongly connected components with spanning trees
  publication-title: ACM Trans. Parallel Comput.
  doi: 10.1145/3543542
– volume: 144
  start-page: 110458
  year: 2023
  ident: ref_28
  article-title: Quantum healthcare computing using precision based granular approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110458
– volume: 1
  start-page: 275
  year: 1992
  ident: ref_13
  article-title: Memory-efficient algorithms for the verification of temporal properties
  publication-title: Form. Methods Syst. Des.
  doi: 10.1007/BF00121128
– volume: 56
  start-page: 533
  year: 2023
  ident: ref_33
  article-title: A trilevel analysis of uncertainty measuresin partition-based granular computing
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10177-6
– volume: 9
  start-page: 68118
  year: 2021
  ident: ref_23
  article-title: A granular computing based classification method from algebraic granule structure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077409
– volume: 345
  start-page: 46
  year: 2016
  ident: ref_29
  article-title: Three-way group decisions with decision-theoretic rough sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.065
– ident: ref_40
  doi: 10.1007/978-1-84800-998-1
– volume: 35
  start-page: 9319
  year: 2023
  ident: ref_24
  article-title: Incremental learning based on granular ball rough sets for classification in dynamic mixed-type decision system
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3237833
– volume: 30
  start-page: 5324
  year: 2022
  ident: ref_26
  article-title: Time-series forecasting via fuzzy-probabilistic approach with evolving clustering-based granulation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2022.3173684
– volume: 52
  start-page: 9101
  year: 2022
  ident: ref_25
  article-title: Trend-based granular representation of time series and its application in clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3054593
– ident: ref_2
  doi: 10.1109/FOCS46700.2020.00108
– ident: ref_16
  doi: 10.1007/978-3-540-70952-7
– ident: ref_15
  doi: 10.1007/3-540-45591-4
– volume: 52
  start-page: 666
  year: 2022
  ident: ref_27
  article-title: Hierarchical granular computing-based model and its reinforcement structural learning for construction of long-term prediction intervals
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2964011
– volume: 192
  start-page: 116390
  year: 2022
  ident: ref_37
  article-title: A fast algorithm for mining temporal association rules in a multi-attributed graph sequence
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116390
– ident: ref_39
  doi: 10.3390/e24081154
– volume: 54
  start-page: 519
  year: 2024
  ident: ref_18
  article-title: Local boundary fuzzified rough k-means-based information granulation algorithm under the principle of justifiable granularity
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2023.3257274
– volume: 1
  start-page: 146
  year: 1972
  ident: ref_1
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201010
– volume: 193
  start-page: 105301
  year: 2020
  ident: ref_35
  article-title: Deep multi-granularity graph embedding for user identity linkage across social networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105301
– ident: ref_10
  doi: 10.1145/2851141.2851161
– ident: ref_12
– volume: 159
  start-page: 86
  year: 2018
  ident: ref_30
  article-title: A large scale consensus reaching process managing group hesitation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.009
– volume: 103
  start-page: 107
  year: 2018
  ident: ref_19
  article-title: Three-way decision and granular computing
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2018.09.005
– volume: 6
  start-page: 3
  year: 2021
  ident: ref_20
  article-title: A survey on granular computing and its uncertainty measure from the perspective of rough set theory
  publication-title: Granul. Comput.
  doi: 10.1007/s41066-019-00204-3
– volume: 281
  start-page: 316
  year: 2020
  ident: ref_31
  article-title: A cost consensus metric for consensus reaching processes based on a comprehensive minimum cost model
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.08.030
– volume: 53
  start-page: 29781
  year: 2023
  ident: ref_32
  article-title: A meta-heuristic feature selection algorithm combining random sampling accelerator and ensemble using data perturbation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-05123-0
– volume: 149
  start-page: 88
  year: 2018
  ident: ref_6
  article-title: Finding strongly connected components of simple digraphs based on generalized rough sets theory
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.02.038
– volume: 32
  start-page: 12
  year: 2024
  ident: ref_21
  article-title: Data-driven interval granulation approach based on uncertainty principle for efficient classification
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2023.3287834
– volume: 21
  start-page: 2626
  year: 2024
  ident: ref_34
  article-title: A novel approach for calculating single-source shortest paths of weighted digraphs based on rough sets theory
  publication-title: Math. Biosci. Eng. MBE
  doi: 10.3934/mbe.2024116
– volume: 81
  start-page: 67
  year: 2019
  ident: ref_3
  article-title: An efficient strongly connected components algorithm in the fault tolerant model
  publication-title: Algorithmica
  doi: 10.1007/s00453-018-0452-3
– volume: 78
  start-page: 101
  year: 2018
  ident: ref_9
  article-title: Orchestrating parallel detection of strongly connected components on gpus
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2017.11.001
– volume: 21
  start-page: 23
  year: 2011
  ident: ref_11
  article-title: Distributed algorithms for scc decomposition
  publication-title: J. Log. Comput.
  doi: 10.1093/logcom/exp003
SSID ssj0000913849
Score 2.278333
Snippet Granular computing (GrC) is a methodology for reducing the complexity of problem solving and includes two basic aspects: granulation and granular-based...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1723
SubjectTerms Algorithms
Apexes
Computing time
Efficiency
Granulation
granulation strategy
Graph theory
Machine learning
Mathematical research
parallel
Parallel processing
SCCs correlations
strongly connected components
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5ADCiiTpzYHgOiMABiAIkJy4-4rVRS1BYk_j13SajaoWJhi5yT4pzP_r6LLt8RchocZyFWLGI2DhHPZBoZ1jFRxkMANutj5aqVvhePj_L1VT3NtfrCmrBaHrh23KVUxgJqxkFmgcO18nHAivk0Sa0FN-Dp2xFqLpmqzmDFEslVXemeQF5_Cfyvj3JmANjJAgZVUv3LDuQKZbqbZKOhhzSvp7VFVopym6w_zLRVJzvkLae3ADBN2y3ayMt-R1eAR57mw94I8v3-OwU2SuueDYBOaDYqe8NvWlW2OOCZ1c1RiYUUdFDSJzPGtirDXfLSvXm-vouaLgmR4wmfRgZpmnGF4YViXHSsSzwLXBYxtzAknJeescx1eGF9MFbwVIHrhBPOWilEskdaJTxtn9BgjUzB3UwUAG4ewNwa7nhmrTU2lr5NLn79pl0jIY6dLIYaUgn0sp73cpuczaw_aumMJXZXuAQzGxS8rgYgDHQTBvqvMGiTc1xAjdsSpuRM83cBvBgKXOlcKIHfARhrk6MFS9hObvH2bwjoZjtPNOZVnAkguwf_MdlDshYDN6orzo5Iazr-LI7JqvuaDibjkyqSfwAgJPn7
  priority: 102
  providerName: Directory of Open Access Journals
Title A Granulation Strategy-Based Algorithm for Computing Strongly Connected Components in Parallel
URI https://www.proquest.com/docview/3067417193
https://doaj.org/article/89ab6432f86f49ab9d2f1085535bbead
Volume 12
WOSCitedRecordID wos001245539500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg48AOjE9RGJUPIA7IWp04sXNCLeoAwaqID2lcsPwRd5O6dLQFaRf-9r3nuIUexoWLFcVPiR0_-_388vx7hDwPTvCQVZxxmwUmSlUwwweGlSIEQLM-q1wc6Y9yMlEnJ1WdHG7LFFa5XhPjQu3nDn3khwhtBZeAN15f_GCYNQr_rqYUGjfJLrIk8Bi693njY0HOSyWqLt49h939IaDAUyQ1A7Odb1miSNh_3bIcbc3R_v-28i65k1AmHXZqcY_caNr7ZO94Q9G6fEC-D-lbsFMpexdNLLWXbARmzdPhbAqPXZ2eUwC1tEv9AEYOxebtdHZJY4CMA7gaK-ctxmPQs5bWZoHZWWYPydej8Zc371hKtsCcyMWKGUR7xjVGNBUXcmBd7nkQqsmEhVvSeeU5L91ANNYHY6UoqsJa6aSzVkmZPyI7LbztMaHBGlUYC9ioARvpARNYI5worbXGZsr3yKv1h9cuMZFjQoyZhh0JDpP-e5h65MVG-qJj4LhGboRjuJFB3ux4Y76Y6jQNtaqgXSLPgiqDgOvKZwHPXxQ59AUmVY-8RA3QOLuhSc6kQwrQMeTJ0kNZSXQncN4jB1uSMCvddvVaQXRaFZb6j3Y8-Xf1U3I7A_DUhaQdkJ3V4mfzjNxyv1Zny0Wf7I7Gk_pTP_oPoPwgWT8qPpa_x1Bfvz-uv10B6VUN1A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQQIOvBGBAj5QcUBWY6-ztg8IpUBplTTqoUg94fqxTiuFTUkCKH-K38jMPgI5lFsP3Fb2aHdn_Xnms3c8Q8irFCRPwnDGvUhM5rrHHO86lsuUgM1GYUI10kM1GumTE3O0QX61Z2EwrLK1iZWhjtOAe-Q7SG0lV8A33l18Y1g1Cv-utiU0algMiuVPWLLN3x58gPHdFmLv4_H7fdZUFWBBZnLBHNIaFwonC8Ol6vqQRZ6kLoT00KRC1JHzPHRl4WNyXsme6Xmvggrea6UyuO81cl1mWuG8Gii22tPBHJtamjq-PstMdwdY5xkmUQOakK15vqpAwGVuoPJte3f_t69yj9xpWDTt17C_TzaK8gG5fbhKQTt_SL706Sfww011Mtpk4V2yXXDbkfYnY1BjcfaVAmmndWkLcOIoNi3HkyWtAoAC0PGqc1pivAk9L-mRm2H1mckj8vlKFHxMNkt42hNCk3e65zxwvwI4QATO450MMvfeOy907JA37UDb0GRax4IfEwsrLoSF_RsWHbK9kr6oM4xcIreLmFnJYF7wqmE6G9vGzFht4L1kJpLOk4RrE0XC8yW9DHQBo9EhrxFxFq0XvFJwzSEMUAzzgNm-Mgq3SzjvkK01SbA6Yb27BaRtrN7c_kHj0393vyQ3948Ph3Z4MBo8I7cEEMU6_G6LbC5m34vn5Eb4sTifz15UE4yS06vG7m_J5WaH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHUJw4DdaYYAPTBxQ1Npx4viAUMcoVNuqHEAaF4ztxN2kLh1tAfVf46_jOXEKPYzbDtwi-ynJiz-_99l5fg_ghbOcOiZpRA1zEU-zJNK0r6OUO4dstmDS1iN9JMbj7ORE5lvwqz0L48MqW5tYG-piZv0eec9TW04F8o2eC2ER-cHwzcW3yFeQ8n9a23IaDUQOy9VPXL4tXo8OcKz3GBu--_j2QxQqDESWx3wZaU9xtC01LyXlom9sXFDHs5Jxg03CFllBaWr7vDSF00bwRCbGCCusMZkQMd73GmwjJeesA9v56Dj_vN7h8Rk3My6baPs4lv0ectBTn1INSUO84QfrcgGXOYXa0w3v_M_f6C7cDvyaDJoJcQ-2yuo-3DpeJ6ddPIAvA_IePXSoW0ZCft5VtI8OvSCD6QTVWJ6eE6TzpCl6ge7di82qyXRF6tAgi0S97pxVPhKFnFUk13Nfl2b6ED5diYKPoFPh03aAOKOzRBtkhSWygwLZkNHc8tQYow3Lii68agdd2ZCD3ZcCmSpci3mIqL8h0oW9tfRFk3vkErl9j5-1jM8YXjfM5hMVDJDKJL4Xj5nLUsfxWhbM-ZMnSYy6oDnpwkuPPuXtGr6S1eF4BirmM4SpgZDCb6RQ2oXdDUm0R3azuwWnCvZwof4g8_G_u5_DDYSsOhqND5_ATYYMsonL24XOcv69fArX7Y_l2WL-LMw2Al-vGry_AWVKcQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Granulation+Strategy-Based+Algorithm+for+Computing+Strongly+Connected+Components+in+Parallel&rft.jtitle=Mathematics+%28Basel%29&rft.au=He%2C+Huixing&rft.au=Xu%2C+Taihua&rft.au=Chen%2C+Jianjun&rft.au=Cui%2C+Yun&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fmath12111723&rft.externalDocID=A797907411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon