On the computational complexity of the secure state-reconstruction problem
In this paper, we discuss the computational complexity of reconstructing the state of a linear system from sensor measurements that have been corrupted by an adversary. The first result establishes that the problem is, in general, NP-hard. We then introduce the notion of eigenvalue observability and...
Saved in:
| Published in: | Automatica (Oxford) Vol. 136; p. 110083 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.02.2022
|
| Subjects: | |
| ISSN: | 0005-1098, 1873-2836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we discuss the computational complexity of reconstructing the state of a linear system from sensor measurements that have been corrupted by an adversary. The first result establishes that the problem is, in general, NP-hard. We then introduce the notion of eigenvalue observability and show that the state can be reconstructed in polynomial time when each eigenvalue is observable by at least 2s+1 sensors and at most s sensors are corrupted by an adversary. However, there is a gap between eigenvalue observability and the possibility of reconstructing the state despite attacks — this gap has been characterized in the literature by the notion of sparse observability. To better understand this, we show that when the A matrix of the linear system has unitary geometric multiplicity, the gap disappears, i.e., eigenvalue observability coincides with sparse observability, and there exists a polynomial time algorithm to reconstruct the state provided the state can be reconstructed. |
|---|---|
| ISSN: | 0005-1098 1873-2836 |
| DOI: | 10.1016/j.automatica.2021.110083 |