On cluster tree for nested and multi-density data clustering

Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets o...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 43; no. 9; pp. 3130 - 3143
Main Authors: Li, Xutao, Ye, Yunming, Li, Mark Junjie, Ng, Michael K.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.09.2010
Elsevier
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets of nested clusters or clusters of multi-density. We embed the agglomerative k-means algorithm in the generation of cluster tree to detect such clusters. Experimental results on both synthetic data sets and real data sets are presented to illustrate the effectiveness of the proposed method. Compared with some existing clustering algorithms (DBSCAN, X-means, BIRCH, CURE, NBC, OPTICS, Neural Gas, Tree-SOM, EnDBSAN and LDBSCAN), our proposed cluster tree approach performs better than these methods.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2010.03.020