Lagrangian relaxation for SVM feature selection

•Feature selection for SVM is stated as a Mixed Binary Linear Programming problem.•Lagrangian relaxation and dual ascent are applied to the model.•Both a lower and an upper bound available at each iteration.•Numerical results on benchmark datasets are given. We discuss a Lagrangian-relaxation-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 87; S. 137 - 145
Hauptverfasser: Gaudioso, M., Gorgone, E., Labbé, M., Rodríguez-Chía, A.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.11.2017
Pergamon Press Inc
Elsevier
Schlagworte:
ISSN:0305-0548, 1873-765X, 0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Feature selection for SVM is stated as a Mixed Binary Linear Programming problem.•Lagrangian relaxation and dual ascent are applied to the model.•Both a lower and an upper bound available at each iteration.•Numerical results on benchmark datasets are given. We discuss a Lagrangian-relaxation-based heuristics for dealing with feature selection in the Support Vector Machine (SVM) framework for binary classification. In particular we embed into our objective function a weighted combination of the L1 and L0 norm of the normal to the separating hyperplane. We come out with a Mixed Binary Linear Programming problem which is suitable for a Lagrangian relaxation approach. Based on a property of the optimal multiplier setting, we apply a consolidated nonsmooth optimization ascent algorithm to solve the resulting Lagrangian dual. In the proposed approach we get, at every ascent step, both a lower bound on the optimal solution as well as a feasible solution at low computational cost. We present the results of our numerical experiments on some benchmark datasets.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2017.06.001