Machine Learning Structure for Controlling the Speed of Variable Reluctance Motor via Transitioning Policy Iteration Algorithm

This paper investigated a new speed regulator using an adaptive transitioning policy iteration learning technique for the variable reluctance motor (VRM) drive. A transitioning strategy is used in this unique scheme to handle the nonlinear behavior of the VRM by using a series of learning centers, e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:World electric vehicle journal Ročník 15; číslo 9; s. 421
Hlavní autor: Alharkan, Hamad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2024
Témata:
ISSN:2032-6653, 2032-6653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigated a new speed regulator using an adaptive transitioning policy iteration learning technique for the variable reluctance motor (VRM) drive. A transitioning strategy is used in this unique scheme to handle the nonlinear behavior of the VRM by using a series of learning centers, each of which is an individual local learning controller at linear operational location that grows throughout the system’s nonlinear domain. This improved control technique based on an adaptive dynamic programming algorithm is developed to derive the prime solution of the infinite horizon linear quadratic tracker (LQT) issue for an unidentified dynamical configuration with a VRM drive. By formulating a policy iteration algorithm for VRM applications, the speed of the motor shows inside the machine model, and therefore the local centers are directly affected by the speed. Hence, when the speed of the rotor changes, the parameters of the local centers grid would be updated and tuned. Additionally, a multivariate transition algorithm has been adopted to provide a seamless transition between the Q-centers. Finally, simulation and experimental results are presented to confirm the suggested control scheme’s efficacy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2032-6653
2032-6653
DOI:10.3390/wevj15090421