Soft Folding

We introduce soft folding, a new interactive method for designing and exploring thin‐plate forms. A user specifies sharp and soft folds as two‐dimensional(2D) curves on a flat sheet, along with the fold magnitude and sharpness of each. Then, based on the soft folds, the system computes the three‐dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 32; H. 7; S. 167 - 176
Hauptverfasser: Zhu, L., Igarashi, T., Mitani, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2013
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce soft folding, a new interactive method for designing and exploring thin‐plate forms. A user specifies sharp and soft folds as two‐dimensional(2D) curves on a flat sheet, along with the fold magnitude and sharpness of each. Then, based on the soft folds, the system computes the three‐dimensional(3D) folded shape. Internally, the system first computes a fold field, which defines local folding operations on a flat sheet. A fold field is a generalization of a discrete fold graph in origami, replacing a graph with sharp folds with a continuous field with soft folds. Next, local patches are folded independently according to the fold field. Finally, a globally folded 3D shape is obtained by assembling the locally folded patches. This algorithm computes an approximation of 3D developable surfaces with user‐defined soft folds at an interactive speed. The user can later apply nonlinear physical simulation to generate more realistic results. Experimental results demonstrated that soft folding is effective for producing complex folded shapes with controllable sharpness.
Bibliographie:istex:A4E14581BF67920E52142F36F33E4CACCA12A8DE
ArticleID:CGF12224
ark:/67375/WNG-FQX64NXT-T
Supporting Information
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12224