Towards Multifield Scalar Topology Based on Pareto Optimality

How can the notion of topological structures for single scalar fields be extended to multifields? In this paper we propose a definition for such structures using the concepts of Pareto optimality and Pareto dominance. Given a set of piecewise‐linear, scalar functions over a common simplical complex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 32; číslo 3pt3; s. 341 - 350
Hlavní autoři: Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.06.2013
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:How can the notion of topological structures for single scalar fields be extended to multifields? In this paper we propose a definition for such structures using the concepts of Pareto optimality and Pareto dominance. Given a set of piecewise‐linear, scalar functions over a common simplical complex of any dimension, our method finds regions of “consensus” among single fields’ critical points and their connectivity relations. We show that our concepts are useful to data analysis on real‐world examples originating from fluid‐flow simulations; in two cases where the consensus of multiple scalar vortex predictors is of interest and in another case where one predictor is studied under different simulation parameters. We also compare the properties of our approach with current alternatives.
Bibliografie:istex:37C4799BD1365EDC96AEAF150050EDEEC321A0BB
ArticleID:CGF12121
ark:/67375/WNG-HXS3D873-D
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12121