Biophysical Variable Retrieval of Silage Maize with Gaussian Process Regression and Hyperparameter Optimization Algorithms

Quantification of vegetation biophysical variables such as leaf area index (LAI), fractional vegetation cover (fCover), and biomass are among the key factors across hydrological, agricultural, and irrigation management studies. The present study proposes a kernel-based machine learning algorithm cap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 14; s. 3690
Hlavní autoři: Akbari, Elahe, Boloorani, Ali Darvishi, Verrelst, Jochem, Pignatti, Stefano, Neysani Samany, Najmeh, Soufizadeh, Saeid, Hamzeh, Saeid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2023
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantification of vegetation biophysical variables such as leaf area index (LAI), fractional vegetation cover (fCover), and biomass are among the key factors across hydrological, agricultural, and irrigation management studies. The present study proposes a kernel-based machine learning algorithm capable of performing adaptive and nonlinear data fitting so as to generate a suitable, accurate, and robust algorithm for spatio-temporal estimation of the three mentioned variables using Sentinel-2 images. To this aim, Gaussian process regression (GPR)–particle swarm optimization (PSO), GPR–genetic algorithm (GA), GPR–tabu search (TS), and GPR–simulated annealing (SA) hyperparameter-optimized algorithms were developed and compared against kernel-based machine learning regression algorithms and artificial neural network (ANN) and random forest (RF) algorithms. The accuracy of the proposed algorithms was assessed using digital hemispherical photography (DHP) data and destructive measurements performed during the growing season of silage maize in agricultural fields of Ghale-Nou, southern Tehran, Iran, in the summer of 2019. The results on biophysical variables against validation data showed that the developed GPR-PSO algorithm outperformed other algorithms under study in terms of robustness and accuracy (0.917, 0.931, 0.882 using R2 and 0.627, 0.078, and 1.99 using RMSE in LAI, fCover, and biomass of Sentinel-2 20 m, respectively). GPR-PSO also possesses the unique ability to generate pixel-based uncertainty maps (confidence level) for prediction purposes (i.e., estimated uncertainty level <0.7 in LAI, fCover, and biomass, for 96%, 98%, and 71% of the total study area, respectively). Altogether, GPR-PSO appears to be the most suitable option for mapping biophysical variables at the local scale using Sentinel-2 images.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15143690