Digital Predistortion Using Lookup Tables With Linear Interpolation and Extrapolation: Direct Least Squares Coefficient Adaptation

In this paper, we present a method to implement digital predistortion (DPD) memory models using lookup tables (LUTs) with linear interpolation and extrapolation. We introduce the required set of basis functions to describe this model. The DPD output is expressed as a linear combination of these basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques Jg. 65; H. 3; S. 980 - 987
Hauptverfasser: Molina, Albert, Rajamani, Kannan, Azadet, Kamran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9480, 1557-9670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a method to implement digital predistortion (DPD) memory models using lookup tables (LUTs) with linear interpolation and extrapolation. We introduce the required set of basis functions to describe this model. The DPD output is expressed as a linear combination of these basis functions and we show how to directly estimate the LUT entries using least squares. We show how this model achieves lower complexity at similar or better performance compared to polynomial models translated to LUTs with interpolation or models based on LUTs without interpolation whose coefficients are adapted directly. We refer to this model as the direct adaptation of LUTs with interpolation/extrapolation (DLUTI). In this paper we also introduce the composite memory polynomial model: a new polynomial model which is a hybrid between the generalized memory polynomial and the dynamic deviation reduction models. This model is used as a starting point to generate the final LUT-based model.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2016.2627562