Organ-specific electrophile responsivity mapping in live C. elegans

Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity of local residents. We here bridge this gap by demonstrating in live C. elegans how electrophile-sensing propensity in specific organs can be...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 187; no. 26; p. 7450
Main Authors: Liu, Jinmin, Kulkarni, Amogh, Gao, Yong-Qi, Urul, Daniel A, Hamelin, Romain, Novotny, Balázs Á, Long, Marcus J C, Aye, Yimon
Format: Journal Article
Language:English
Published: United States 26.12.2024
Subjects:
ISSN:1097-4172, 1097-4172
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity of local residents. We here bridge this gap by demonstrating in live C. elegans how electrophile-sensing propensity in specific organs can be quantitatively mapped and ranked. Using this method, >70% of tissue-specific responders exhibit electrophile responsivity, independent of tissue-specific abundance. One responder, cyp-33e1-for which both human and worm orthologs are electrophile responsive-marshals stress-dependent gut functions, despite manifesting uniform abundance across all tissues studied. Cyp-33e1's localized electrophile responsivity operates site specifically, triggering multifaceted responses: electrophile sensing through the catalytic-site cysteine results in partitioning between enzyme inhibition and localized production of a critical metabolite that governs global lipid availability, whereas rapid dual-cysteine site-specific sensing modulates gut homeostasis. Beyond pinpointing chemical actionability within local proteomes, organ-specific electrophile responsivity mapping illuminates otherwise intractable locale-specific metabolite signaling and stress response programs influencing organ-specific decision-making.
AbstractList Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity of local residents. We here bridge this gap by demonstrating in live C. elegans how electrophile-sensing propensity in specific organs can be quantitatively mapped and ranked. Using this method, >70% of tissue-specific responders exhibit electrophile responsivity, independent of tissue-specific abundance. One responder, cyp-33e1-for which both human and worm orthologs are electrophile responsive-marshals stress-dependent gut functions, despite manifesting uniform abundance across all tissues studied. Cyp-33e1's localized electrophile responsivity operates site specifically, triggering multifaceted responses: electrophile sensing through the catalytic-site cysteine results in partitioning between enzyme inhibition and localized production of a critical metabolite that governs global lipid availability, whereas rapid dual-cysteine site-specific sensing modulates gut homeostasis. Beyond pinpointing chemical actionability within local proteomes, organ-specific electrophile responsivity mapping illuminates otherwise intractable locale-specific metabolite signaling and stress response programs influencing organ-specific decision-making.Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity of local residents. We here bridge this gap by demonstrating in live C. elegans how electrophile-sensing propensity in specific organs can be quantitatively mapped and ranked. Using this method, >70% of tissue-specific responders exhibit electrophile responsivity, independent of tissue-specific abundance. One responder, cyp-33e1-for which both human and worm orthologs are electrophile responsive-marshals stress-dependent gut functions, despite manifesting uniform abundance across all tissues studied. Cyp-33e1's localized electrophile responsivity operates site specifically, triggering multifaceted responses: electrophile sensing through the catalytic-site cysteine results in partitioning between enzyme inhibition and localized production of a critical metabolite that governs global lipid availability, whereas rapid dual-cysteine site-specific sensing modulates gut homeostasis. Beyond pinpointing chemical actionability within local proteomes, organ-specific electrophile responsivity mapping illuminates otherwise intractable locale-specific metabolite signaling and stress response programs influencing organ-specific decision-making.
Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity of local residents. We here bridge this gap by demonstrating in live C. elegans how electrophile-sensing propensity in specific organs can be quantitatively mapped and ranked. Using this method, >70% of tissue-specific responders exhibit electrophile responsivity, independent of tissue-specific abundance. One responder, cyp-33e1-for which both human and worm orthologs are electrophile responsive-marshals stress-dependent gut functions, despite manifesting uniform abundance across all tissues studied. Cyp-33e1's localized electrophile responsivity operates site specifically, triggering multifaceted responses: electrophile sensing through the catalytic-site cysteine results in partitioning between enzyme inhibition and localized production of a critical metabolite that governs global lipid availability, whereas rapid dual-cysteine site-specific sensing modulates gut homeostasis. Beyond pinpointing chemical actionability within local proteomes, organ-specific electrophile responsivity mapping illuminates otherwise intractable locale-specific metabolite signaling and stress response programs influencing organ-specific decision-making.
Author Gao, Yong-Qi
Aye, Yimon
Hamelin, Romain
Long, Marcus J C
Kulkarni, Amogh
Urul, Daniel A
Liu, Jinmin
Novotny, Balázs Á
Author_xml – sequence: 1
  givenname: Jinmin
  surname: Liu
  fullname: Liu, Jinmin
  organization: Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland
– sequence: 2
  givenname: Amogh
  surname: Kulkarni
  fullname: Kulkarni, Amogh
  organization: Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland; Friedrich Schiller University, 07737 Jena, Germany
– sequence: 3
  givenname: Yong-Qi
  surname: Gao
  fullname: Gao, Yong-Qi
  organization: Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland
– sequence: 4
  givenname: Daniel A
  surname: Urul
  fullname: Urul, Daniel A
  organization: Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland; AssayQuant Technologies, Marlboro, MA 01752, USA
– sequence: 5
  givenname: Romain
  surname: Hamelin
  fullname: Hamelin, Romain
  organization: Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland
– sequence: 6
  givenname: Balázs Á
  surname: Novotny
  fullname: Novotny, Balázs Á
  organization: Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland
– sequence: 7
  givenname: Marcus J C
  surname: Long
  fullname: Long, Marcus J C
  email: marcusjohncurtis.long@unil.ch
  organization: University of Lausanne, Lausanne 1015, Switzerland. Electronic address: marcusjohncurtis.long@unil.ch
– sequence: 8
  givenname: Yimon
  surname: Aye
  fullname: Aye, Yimon
  email: yimon.aye@chem.ox.ac.uk
  organization: Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland. Electronic address: yimon.aye@chem.ox.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39504959$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1URB_wAyxQlmwS_E68RKU8pErdwDpy3ElxlTgmTir1b_gWvgwjisRidEdXZ0Z3Zo4mrnOA0DXBGcFE3u0zA02TUUx5NDJM-BmaEazylJOcTv71UzQPYY8xLoQQF2jKlMBcCTVDD5t-p10aPBhbW5NAA2boO_9uG0h6CL5zwR7scExa7b11u8S6pLEHSJbZ12ek43S4ROe1bgJcnXSB3h5Xr8vndL15elner1PDGRvSLS80jUUYYAykyHkV_dqobSVBqRjNKFZhUxutGHDJKimZESwHqZQsOF2g29-9vu8-RghD2drw8wPtoBtDyQgVvJCE04jenNCxamFb-t62uj-Wf5fTb0UDXbg
CitedBy_id crossref_primary_10_1038_s42004_024_01282_4
crossref_primary_10_1021_acschembio_4c00835
crossref_primary_10_1039_D5CS00381D
crossref_primary_10_1016_j_bmc_2024_117873
ContentType Journal Article
Copyright Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2024.10.014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 39504959
Genre Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0SF
0WA
1RT
1~5
29B
2FS
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
YZZ
ZCA
7X8
AAYWO
ABDGV
ACVFH
ADCNI
APXCP
EFKBS
ID FETCH-LOGICAL-c433t-d48a248a13e00e1874b433fc9db6e99555c93b0cfca93e463b663c537e6996842
IEDL.DBID 7X8
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001402887800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Thu Oct 02 10:26:33 EDT 2025
Wed Feb 19 01:58:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords reactive metabolite signaling
tissue-specific stress response
proximity labeling proteomics
C. elegans
organ-specific responsivity profiling
cytochrome P450
4-hydroxynonenal
function-guided spatial mapping
Language English
License Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-d48a248a13e00e1874b433fc9db6e99555c93b0cfca93e463b663c537e6996842
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.cell.2024.10.014
PMID 39504959
PQID 3125486142
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3125486142
pubmed_primary_39504959
PublicationCentury 2000
PublicationDate 2024-12-26
PublicationDateYYYYMMDD 2024-12-26
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2024
SSID ssj0008555
Score 2.486493
Snippet Proximity labeling technologies are limited to indexing localized protein residents. Such data-although valuable-cannot inform on small-molecule responsivity...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7450
SubjectTerms Animals
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - metabolism
Cysteine - metabolism
Cytochrome P-450 Enzyme System - metabolism
Humans
Organ Specificity
Stress, Physiological
Title Organ-specific electrophile responsivity mapping in live C. elegans
URI https://www.ncbi.nlm.nih.gov/pubmed/39504959
https://www.proquest.com/docview/3125486142
Volume 187
WOSCitedRecordID wos001402887800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFLz4_TG_iOA1s2uSNjmJDIcHHTso7FaaNNGBdnOdgv-977UZOwmCh_ZQGigvr-8rv_d-hFwlPLdeF55ZyD6Y4EXOjPCeGRX5WFshuKobhR_SwUCNRnoYCm5VgFUubGJtqIuJxRr5NQdPLBQ4k_hm-sGQNQpPVwOFxippcQhlUKvT0XJauJI16ykesjIBnjo0zTT4LiyMQ34Yiw6iu7CL57cQs3Y1_e3_fuQO2QpBJr1ttGKXrLhyj2w0tJPf-6RXN2AybLJEoBANVDjTV7AQdBZAs8gpQd9zHN_wQsclfQOzSHsdfBkWVwfkuX_31LtngUyBWcH5nBVC5TFcXe6iyCETn4Hn3urCJE5rkJTV3ETW21xzJxJuIBaxkqcugZRIifiQrJWT0h0TKqXnsihkam2Ew3mMKlTXR8p3vXEQXrXJ5UI6GSgrCjov3eSzypbyaZOjRsTZtJmqkXEtIVuR-uQPq0_JJu4cwkri5Iy0PPyq7pys26_5uJpd1FoA98Hw8QeEs7vD
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organ-specific+electrophile+responsivity+mapping+in+live+C.%C2%A0elegans&rft.jtitle=Cell&rft.au=Liu%2C+Jinmin&rft.au=Kulkarni%2C+Amogh&rft.au=Gao%2C+Yong-Qi&rft.au=Urul%2C+Daniel+A&rft.date=2024-12-26&rft.eissn=1097-4172&rft.volume=187&rft.issue=26&rft.spage=7450&rft_id=info:doi/10.1016%2Fj.cell.2024.10.014&rft_id=info%3Apmid%2F39504959&rft_id=info%3Apmid%2F39504959&rft.externalDocID=39504959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon