An Extended Primal-Dual Algorithm Framework for Nonconvex Problems: Application to Image Reconstruction in Spectral CT

Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inverse problems Ročník 38; číslo 8
Hlavní autoři: Gao, Yu, Pan, Xiaochuan, Chen, Chong
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.08.2022
Témata:
ISSN:0266-5611
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different iterative schemes or algorithms, and then establish the relationship to some existing algorithms. Under appropriate conditions, we prove the convergence of these schemes for the general case. Moreover, when the proposed schemes are applied to solving a specific problem in spectral CT image reconstruction, namely, total variation regularized nonlinear least-squares problem with nonnegative constraint, we also prove the particular convergence for these schemes by using some special properties. The numerical experiments with densely and sparsely data demonstrate the convergence and accuracy of the proposed algorithm framework in terms of visual inspection of images of realistic anatomic complexity and quantitative analysis with metrics structural similarity, peak signal-to-noise ratio, mean square error and maximum pixel difference. We analyze the computational complexity of these schemes, and discuss the extended applications of this algorithm framework in other nonlinear imaging problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-5611
DOI:10.1088/1361-6420/ac79c8