Study on Land Subsidence Simulation Based on a Back-Propagation Neural Network Combined with the Sparrow Search Algorithm

Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 12; S. 2978
Hauptverfasser: Zhu, Xueqi, Zhu, Wantian, Guo, Lin, Ke, Yinghai, Li, Xiaojuan, Zhu, Lin, Sun, Ying, Liu, Yaxuan, Chen, Beibei, Tian, Jinyan, Gong, Huili
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.
AbstractList Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R²) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.
Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.
Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R[sup.2] ) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.
Audience Academic
Author Sun, Ying
Zhu, Xueqi
Ke, Yinghai
Chen, Beibei
Zhu, Lin
Zhu, Wantian
Gong, Huili
Li, Xiaojuan
Liu, Yaxuan
Tian, Jinyan
Guo, Lin
Author_xml – sequence: 1
  givenname: Xueqi
  orcidid: 0009-0000-8788-5371
  surname: Zhu
  fullname: Zhu, Xueqi
– sequence: 2
  givenname: Wantian
  surname: Zhu
  fullname: Zhu, Wantian
– sequence: 3
  givenname: Lin
  orcidid: 0000-0003-2244-0034
  surname: Guo
  fullname: Guo, Lin
– sequence: 4
  givenname: Yinghai
  surname: Ke
  fullname: Ke, Yinghai
– sequence: 5
  givenname: Xiaojuan
  surname: Li
  fullname: Li, Xiaojuan
– sequence: 6
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
– sequence: 7
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
– sequence: 8
  givenname: Yaxuan
  surname: Liu
  fullname: Liu, Yaxuan
– sequence: 9
  givenname: Beibei
  surname: Chen
  fullname: Chen, Beibei
– sequence: 10
  givenname: Jinyan
  surname: Tian
  fullname: Tian, Jinyan
– sequence: 11
  givenname: Huili
  surname: Gong
  fullname: Gong, Huili
BookMark eNptUt9v0zAQjtCQGGMv_AWReEFIGf7VOH4s1YBJFSAVnq2LfW7dJXGxE1X973GXoaEJ--FOd9_3nX13r4uLIQxYFG8pueFckY8x0QVlTMnmRXHJiGSVYIpd_OO_Kq5T2pN8OKeKiMvitBkneyrDUK5hsOVmapO3OBgsN76fOhh9Tn2ChPaMgeya--pHDAfYzrlvOEXoshmPId6Xq9C3fsjoox935bjLOgeIMRzLDUI0u3LZbUPMuf5N8dJBl_D60V4Vvz7f_lx9rdbfv9ytluvKCM7HSjWggFrRKgRE0lJBG6vy860UgltnFGe8lqQhUiBxuQGybmVdg7QUnSL8qribdW2AvT5E30M86QBePwRC3GqIozcd6obV4FRLBCgpDMHWWOvYQgl0ziCXWev9rHWI4feEadS9Twa7DgYMU9KcCCIWshY0Q989g-7DFIf8U80apppGcFFn1M2M2kKu7wcXxggmX4u9N3m8zuf4Ui6ahZQ1OcuSmWBiSCmi08aPD5PIRN9pSvR5F_TTLmTKh2eUv034D_gP9xy1Ug
CitedBy_id crossref_primary_10_3390_s24154992
crossref_primary_10_1038_s41598_023_49579_z
crossref_primary_10_3390_rs16152829
crossref_primary_10_1038_s41598_025_14712_7
crossref_primary_10_1109_JIOT_2024_3377440
Cites_doi 10.1016/j.scitotenv.2020.138595
10.1038/s41467-020-17038-2
10.1080/15481603.2019.1676973
10.1029/2020GL088676
10.1002/2014WR016841
10.1016/j.cej.2020.126673
10.1016/j.scitotenv.2018.03.244
10.1016/j.rse.2020.112254
10.1016/j.rse.2016.12.007
10.1016/j.rse.2013.08.038
10.1080/21642583.2019.1708830
10.1007/s10661-021-08962-x
10.1016/j.enggeo.2015.04.020
10.3390/rs10030365
10.1016/j.isatra.2021.04.004
10.1016/j.soildyn.2022.107433
10.3390/rs12244044
10.1155/2019/9389820
10.1016/j.enggeo.2018.08.014
10.1016/j.scitotenv.2020.139111
10.3390/rs14133142
10.1016/j.rse.2019.111357
10.1109/36.868878
10.1016/j.jhydrol.2021.126990
10.3390/rs10040494
10.3390/rs11101170
10.3390/rs10071006
10.1080/01431161.2016.1259674
10.1029/2019WR027026
10.1080/15481603.2017.1331511
10.1016/j.scitotenv.2018.11.104
10.1126/science.abb8549
10.1016/j.scitotenv.2021.149398
10.1016/j.geomorph.2019.03.017
10.1080/10106049.2021.1933211
10.1029/2020GL090970
10.1109/TGRS.2002.803792
10.26833/ijeg.882589
10.1016/j.asr.2018.11.008
10.1007/s11069-018-3431-8
10.26833/ijeg.976495
10.1016/j.scitotenv.2021.149244
10.3390/w12072051
10.3390/w14203197
10.3390/rs12030457
10.1016/j.habitatint.2020.102198
10.3390/rs14020291
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15122978
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_826af9b04a974c0ebcddf2594effce37
A758577601
10_3390_rs15122978
GeographicLocations China
Beijing China
Italy
Mexico
Iran
Indonesia
GeographicLocations_xml – name: China
– name: Mexico
– name: Iran
– name: Indonesia
– name: Beijing China
– name: Italy
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-98a9a1d4b9eaee0b1418d9331d7443dfc93236708074e0f51276b766a7d1ef903
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016128000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:35:33 EDT 2025
Wed Oct 01 15:00:02 EDT 2025
Fri Jul 25 11:57:41 EDT 2025
Tue Nov 04 18:15:10 EST 2025
Sat Nov 29 07:17:35 EST 2025
Tue Nov 18 21:36:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-98a9a1d4b9eaee0b1418d9331d7443dfc93236708074e0f51276b766a7d1ef903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2244-0034
0009-0000-8788-5371
OpenAccessLink https://www.proquest.com/docview/2829884346?pq-origsite=%requestingapplication%
PQID 2829884346
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_826af9b04a974c0ebcddf2594effce37
proquest_miscellaneous_3040457641
proquest_journals_2829884346
gale_infotracacademiconefile_A758577601
crossref_citationtrail_10_3390_rs15122978
crossref_primary_10_3390_rs15122978
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yastika (ref_7) 2019; 63
Chen (ref_24) 2016; 38
Ng (ref_20) 2012; 18
ref_14
Franceschini (ref_5) 2018; 245
ref_13
Li (ref_28) 2020; 382
Pourghasemi (ref_35) 2022; 37
Berardino (ref_42) 2002; 40
Gambolati (ref_3) 2015; 51
Zhu (ref_27) 2020; 56
Li (ref_38) 2019; 233
Li (ref_52) 2021; 799
Ferretti (ref_39) 2000; 38
Deng (ref_46) 2017; 54
ref_23
Li (ref_30) 2021; 405
Strozzi (ref_21) 2017; 190
Zhu (ref_1) 2015; 193
ref_29
Ezquerro (ref_9) 2021; 371
Cigna (ref_16) 2021; 254
Orhan (ref_43) 2021; 193
Corbau (ref_6) 2019; 654
(ref_37) 2023; 8
ref_33
Zhu (ref_48) 2022; 162
Li (ref_51) 2020; 101
Xue (ref_36) 2020; 8
Zhou (ref_26) 2019; 335
Arabameri (ref_34) 2020; 726
Tosi (ref_11) 2018; 633
Guo (ref_19) 2020; 47
Park (ref_41) 2021; 48
Duysak (ref_45) 2022; 7
Du (ref_18) 2021; 603
Hu (ref_12) 2019; 2019
Taravatrooy (ref_32) 2018; 94
Zehra (ref_31) 2022; 121
Foroughnia (ref_15) 2019; 74
ref_47
Jasechko (ref_22) 2020; 11
ref_44
ref_40
Chaussard (ref_10) 2014; 140
ref_2
ref_49
Suquet (ref_53) 2021; 799
ref_8
ref_4
Lyu (ref_25) 2020; 57
Chen (ref_17) 2020; 735
References_xml – volume: 726
  start-page: 138595
  year: 2020
  ident: ref_34
  article-title: A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138595
– volume: 74
  start-page: 248
  year: 2019
  ident: ref_15
  article-title: An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 3229
  year: 2020
  ident: ref_22
  article-title: Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17038-2
– volume: 57
  start-page: 140
  year: 2020
  ident: ref_25
  article-title: Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2019.1676973
– volume: 47
  start-page: e2020GL088676
  year: 2020
  ident: ref_19
  article-title: Understanding Uneven Land Subsidence in Beijing, China, Using a Novel Combination of Geophysical Prospecting and InSAR
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088676
– volume: 51
  start-page: 3922
  year: 2015
  ident: ref_3
  article-title: Geomechanics of subsurface water withdrawal and injection
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016841
– volume: 405
  start-page: 126673
  year: 2021
  ident: ref_30
  article-title: Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126673
– volume: 633
  start-page: 752
  year: 2018
  ident: ref_11
  article-title: Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992-2010 results from SAR-based interferometry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.244
– volume: 254
  start-page: 112254
  year: 2021
  ident: ref_16
  article-title: Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112254
– volume: 190
  start-page: 1
  year: 2017
  ident: ref_21
  article-title: Widespread surface subsidence measured with satellite SAR interferometry in the Swiss alpine range associated with the construction of the Gotthard Base Tunnel
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.007
– volume: 140
  start-page: 94
  year: 2014
  ident: ref_10
  article-title: Land subsidence in central Mexico detected by ALOS InSAR time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.038
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_36
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 193
  start-page: 174
  year: 2021
  ident: ref_43
  article-title: Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-021-08962-x
– volume: 193
  start-page: 243
  year: 2015
  ident: ref_1
  article-title: Land subsidence due to groundwater withdrawal in the northern Beijing plain, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.04.020
– ident: ref_14
  doi: 10.3390/rs10030365
– volume: 121
  start-page: 217
  year: 2022
  ident: ref_31
  article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.04.004
– volume: 162
  start-page: 107433
  year: 2022
  ident: ref_48
  article-title: Train-induced vibration and subsidence prediction of the permafrost subgrade along the Qinghai-Tibet Railway
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2022.107433
– volume: 18
  start-page: 232
  year: 2012
  ident: ref_20
  article-title: Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_33
  doi: 10.3390/rs12244044
– volume: 2019
  start-page: 9389820
  year: 2019
  ident: ref_12
  article-title: Using multisensor SAR datasets to monitor land subsidence in Los Angeles from 2003 to 2017
  publication-title: J. Sens.
  doi: 10.1155/2019/9389820
– volume: 245
  start-page: 192
  year: 2018
  ident: ref_5
  article-title: Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.08.014
– volume: 735
  start-page: 139111
  year: 2020
  ident: ref_17
  article-title: Land subsidence and its relation with groundwater aquifers in Beijing Plain of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139111
– ident: ref_23
  doi: 10.3390/rs14133142
– volume: 233
  start-page: 111357
  year: 2019
  ident: ref_38
  article-title: Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111357
– volume: 38
  start-page: 2202
  year: 2000
  ident: ref_39
  article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868878
– volume: 603
  start-page: 126990
  year: 2021
  ident: ref_18
  article-title: Analysis of the impact of the South-to-North water diversion project on water balance and land subsidence in Beijing, China between 2007 and 2020
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126990
– ident: ref_4
  doi: 10.3390/rs10040494
– ident: ref_2
  doi: 10.3390/rs11101170
– ident: ref_47
  doi: 10.3390/rs10071006
– volume: 38
  start-page: 808
  year: 2016
  ident: ref_24
  article-title: Characterization and causes of land subsidence in Beijing, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1259674
– volume: 56
  start-page: e2019WR027026
  year: 2020
  ident: ref_27
  article-title: The 3-D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR027026
– volume: 54
  start-page: 797
  year: 2017
  ident: ref_46
  article-title: Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2017.1331511
– volume: 654
  start-page: 1196
  year: 2019
  ident: ref_6
  article-title: Coupling land use evolution and subsidence in the Po Delta, Italy: Revising the past occurrence and prospecting the future management challenges
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.104
– volume: 371
  start-page: 34
  year: 2021
  ident: ref_9
  article-title: Mapping the global threat of land subsidence
  publication-title: Science
  doi: 10.1126/science.abb8549
– ident: ref_40
– volume: 799
  start-page: 149398
  year: 2021
  ident: ref_53
  article-title: Assessing the effect of catchment characteristics to enhanced coagulation in drinking water treatment: RSM models and sensitivity analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149398
– volume: 335
  start-page: 48
  year: 2019
  ident: ref_26
  article-title: Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2019.03.017
– volume: 37
  start-page: 6165
  year: 2022
  ident: ref_35
  article-title: Comparison of statistical and machine learning approaches in land subsidence modelling
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1933211
– volume: 48
  start-page: e2020GL090970
  year: 2021
  ident: ref_41
  article-title: Nonlinear modeling of subsidence from a decade of InSAR time series
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090970
– ident: ref_44
– volume: 40
  start-page: 2375
  year: 2002
  ident: ref_42
  article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803792
– volume: 7
  start-page: 81
  year: 2022
  ident: ref_45
  article-title: Investigation of the performance of different wavelet-based fusions of SAR and optical images using Sentinel-1 and Sentinel-2 datasets
  publication-title: Int. J. Eng. Geosci.
  doi: 10.26833/ijeg.882589
– volume: 63
  start-page: 1719
  year: 2019
  ident: ref_7
  article-title: Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.11.008
– volume: 94
  start-page: 905
  year: 2018
  ident: ref_32
  article-title: A hybrid clustering-fusion methodology for land subsidence estimation
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3431-8
– volume: 8
  start-page: 98
  year: 2023
  ident: ref_37
  article-title: Investigation and modeling of physical development of urban areas and its effects on light pollution using night light data
  publication-title: Int. J. Eng. Geosci.
  doi: 10.26833/ijeg.976495
– ident: ref_50
– volume: 382
  start-page: 505
  year: 2020
  ident: ref_28
  article-title: Land subsidence modelling using a long short-term memory algorithm based on time-series datasets
  publication-title: Proc. Int. Assoc. Hydrol. Sci.
– volume: 799
  start-page: 149244
  year: 2021
  ident: ref_52
  article-title: Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149244
– ident: ref_29
  doi: 10.3390/w12072051
– ident: ref_13
  doi: 10.3390/w14203197
– ident: ref_8
  doi: 10.3390/rs12030457
– volume: 101
  start-page: 102198
  year: 2020
  ident: ref_51
  article-title: Evolution of rural settlements in the Tongzhou District of Beijing under the new-type urbanization policies
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2020.102198
– ident: ref_49
  doi: 10.3390/rs14020291
SSID ssj0000331904
Score 2.377426
Snippet Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2978
SubjectTerms Accuracy
Agricultural production
Algorithms
Artificial intelligence
Back propagation
Back propagation networks
back-propagation neural network
China
Comparative analysis
Compressibility
Computer simulation
Digital mapping
Distribution
Geology
Google Earth Engine
Groundwater
Groundwater data
Groundwater levels
Infrared radiometers
Interferometric synthetic aperture radar
interferometry
Internet
Land subsidence
Learning algorithms
Machine learning
Measurement
multiscale
Neural networks
Optimization
Passeriformes
Radiometry
Remote sensing
Root-mean-square errors
Search algorithms
Sensitivity analysis
Simulation
Simulation models
sparrow search algorithm
Spatial analysis
Spatial data
Subsidence
subsidence simulation
Subsidences (Earth movements)
Synthetic aperture radar
Thickness
time series analysis
water table
Weighting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SBL2In7i1SkRBPAzNbF4nyXErFg9lKVSht5DPWmxny-y2sP9930um6x4UL96GyRsmeXmfkze_x9jHbEJnkj5oWhVCA1OQjQcnmtD6dABOKR0KZP6xms_12Zk52Wr1RTVhFR64Mm4fw1-XjRfgMPINIvkQY8aYHVLOIcnyH7lQZiuZKjZYomgJqHikEvP6_WFJvm1a-qlteaAC1P83c1x8zNFT9mQMDvmsTuoZe5D65-zR2Kf85_oFW1PZ35oven7s-shJ62tTUH56cTU24uKH6Jgi0Ti8DL-akwET4_M6Rlgc-IZ5Lf7maA0wM0Zq-hzLMRbkp9cFlZHXMmQ-uzxfDDh29ZL9OPr6_cu3Zmye0ASQctUY7YxrI3iTXErCt9DqaJAtUQHImAMGbgTeRmA4SWTkjeq86jqnYpuyEfIV2-kXfXrN-FS3ShKoTAaNtMa7zk1F9jI47_CxCft8z1AbRmRxanBxaTHDIObb38yfsA8b2uuKp_FHqkPalw0FYWCXGygZdpQM-y_JmLBPtKuWNBWnE9z4wwEuijCv7IxSJUU1QRO2d7_xdlThpaUjZq1BAq7v_WYYlY9OVFyfFjdLK9EEAmZs0O7-jxm_YY-pm32tRNtjO6vhJr1lD8Pt6mI5vCsSfgc6KAIk
  priority: 102
  providerName: Directory of Open Access Journals
Title Study on Land Subsidence Simulation Based on a Back-Propagation Neural Network Combined with the Sparrow Search Algorithm
URI https://www.proquest.com/docview/2829884346
https://www.proquest.com/docview/3040457641
https://doaj.org/article/826af9b04a974c0ebcddf2594effce37
Volume 15
WOSCitedRecordID wos001016128000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgA8GFH2OIwKiMQEIcoiW1G8cn1KIOkEYVUZAGF8u_0k1sSUk6pF7423kvcTsOwIVLVNWvjRs_P_t7fv0-Ql6U0mbS56M4FdbGfMhZbLhOYpsaP-JaiNx2lPnHYjbLT05kERJubSir3MTELlC72mKO_BBP_PKcM569Xn6PUTUKT1eDhMZ1sotMZeDnu5PprPi4zbIkDFws4T0vKQN8f9i0uMYNO12131aijrD_b2G5W2uO7v5vL--RO2GXSce9W9wn13y1R24FwfPT9R65-bZT9F0_IGusJFzTuqLHunIUA0mvM0rnZxdB24tOYK1zaKPhpf0WFw1g7UXfhvQecK9ZX09OIcAA2AZrzPBS2F7S-bIjeqR9ZTMdny-gx6vTi33y-Wj66c27OOgxxJYztoplrqVOHTfSa-8Tk_I0dxKesBOcM1da2AsiHxzy6_ikhMcsMiOyTAuX-lIm7CHZqerKPyJ0mKeCIU9NyXOwlUZnepiUhlltNHwsIq82Y6NsICtHzYxzBaAFx1FdjWNEnm9tlz1Fxx-tJjjEWwuk1e7eqJuFCrNUAdbSpTQJ1wCzbOKNda4EgMh9WVrPREReooMonPzQHavDfxjgRyGNlhoj-hJYZhSRg42DqBAVWnXlHRF5tm2G-YyHNLry9WWrGERVDiCQp4___RVPyO0hbLj6srUDsrNqLv1TcsP-WJ21zSBMhEGXYxhgRescrz-ncC1GX6G9eP-h-PIL5HYYuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFQuPAqIQIFFgBAHq2vv1vYeEEqB0qppFKlFak_LvtxWtHZIUlD-FL-RGdtJOQC3HrhZ8WRtb77MY3f8fQAvC-VSFfKNKM6ci2QiRWSl4ZGLbdiQJstyV1Pm97PBID88VMMl-Dl_F4baKuc-sXbUvnK0Rr5OO355LoVM342-RaQaRburcwmNBha7YfYDS7bJ250P-Pu-SpKtjwfvt6NWVSByUohppHKjTOylVcGEwG0s49xjWR_7TErhC4cZDbGaEUtM4AUGxCy1WZqazMehUFzguNdgWSLYeQeWhzt7w6PFqg7HcRSXDQ-qEIqvjycUU5Nax-23yFcLBPwtDNSxbev2_zYrd-BWm0WzXgP7u7AUylVYaQXdT2arcONTrVg8uwcz6pScsapkfVN6Ro6y0VFl-6fnrXYZ28RY7snG4KH7Gg3HFTra5hzRl-C1Bk2_PEMHajEz94xWsBmmz2x_VBNZsqZzm_XOjnGGpifn9-HzlczBA-iUVRkeAkvyOBPEw1PIHG2VNalJeGGFM9bg17rwZo4F7VoydtIEOdNYlBFu9CVuuvBiYTtqKEj-aLVJkFpYEG14_UE1PtatF9JYS5pCWS4NlpGOB-u8L7AAlqEoXBBZF14TIDU5N7wdZ9p3NPChiCZM96i6zKiNqgtrc0Dq1utN9CUau_B8cRr9FW1CmTJUFxMtMGpILHJl_OjfQzyDle2Dvb7u7wx2H8PNBJPLpkVvDTrT8UV4Atfd9-npZPy0_RMy-HLVCP8FIWJuFg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VlNeFRwERKLAIEOJgxfZuvfYBoYQ2UDWKIkql3pbd9W5b0dohTkH5a_w6Zmwn5QDceuAW2eONs_k8j93x9wG89JlNMpduBZG0NhCx4IEROgxsZNyW0FKmtqbMH8nxOD08zCZr8HP5Lgy1VS59Yu2o89LSGnmPdvzSVHCR9HzbFjHZHr6bfgtIQYp2WpdyGg1E9tziB5Zv1dvdbfyvX8XxcOfz-49BqzAQWMH5PMhSnekoFyZz2rnQRCJKcyzxo1wKwXNvMbshhjNijHGhx-AoEyOTRMs8cj4LOY57BdYlx6KnA-uDnfHk02qFJ8RxslA0nKicZ2FvVlF8jWtNt9-iYC0W8LeQUMe54e3_eYbuwK02u2b95nG4C2uu2IAbrdD78WIDrn2olYwX92BBHZQLVhZspIuckQNt9FXZ_slZq2nGBhjjc7LR-NF-DSazEh1wc45oTfC7xk0fPUPHajBjzxmtbDNMq9n-tCa4ZE1HN-ufHuEMzY_P7sPBpczBA-gUZeEeAovTSHLi5_EiRdvM6ETHoTfcaqPxsi68WeJC2ZaknbRCThUWa4QhdYGhLrxY2U4bapI_Wg0IXisLohOvD5SzI9V6J4U1pvaZCYXG8tKGztg891gYC-e9dVx24TWBU5HTw9uxun13A38U0YepPlWdktqrurC5BKdqvWGlLpDZheer0-jHaHNKF648rxTHaCKw-BXRo38P8QyuI6zVaHe89xhuxphzNp17m9CZz87dE7hqv89PqtnT9nlk8OWyAf4L2Jl2sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Land+Subsidence+Simulation+Based+on+a+Back-Propagation+Neural+Network+Combined+with+the+Sparrow+Search+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhu%2C+Xueqi&rft.au=Zhu%2C+Wantian&rft.au=Guo%2C+Lin&rft.au=Ke%2C+Yinghai&rft.date=2023-06-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=12&rft_id=info:doi/10.3390%2Frs15122978&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon