Study on Land Subsidence Simulation Based on a Back-Propagation Neural Network Combined with the Sparrow Search Algorithm
Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as t...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 15; H. 12; S. 2978 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2023
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention. |
|---|---|
| AbstractList | Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R²) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention. Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention. Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R[sup.2] ) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention. |
| Audience | Academic |
| Author | Sun, Ying Zhu, Xueqi Ke, Yinghai Chen, Beibei Zhu, Lin Zhu, Wantian Gong, Huili Li, Xiaojuan Liu, Yaxuan Tian, Jinyan Guo, Lin |
| Author_xml | – sequence: 1 givenname: Xueqi orcidid: 0009-0000-8788-5371 surname: Zhu fullname: Zhu, Xueqi – sequence: 2 givenname: Wantian surname: Zhu fullname: Zhu, Wantian – sequence: 3 givenname: Lin orcidid: 0000-0003-2244-0034 surname: Guo fullname: Guo, Lin – sequence: 4 givenname: Yinghai surname: Ke fullname: Ke, Yinghai – sequence: 5 givenname: Xiaojuan surname: Li fullname: Li, Xiaojuan – sequence: 6 givenname: Lin surname: Zhu fullname: Zhu, Lin – sequence: 7 givenname: Ying surname: Sun fullname: Sun, Ying – sequence: 8 givenname: Yaxuan surname: Liu fullname: Liu, Yaxuan – sequence: 9 givenname: Beibei surname: Chen fullname: Chen, Beibei – sequence: 10 givenname: Jinyan surname: Tian fullname: Tian, Jinyan – sequence: 11 givenname: Huili surname: Gong fullname: Gong, Huili |
| BookMark | eNptUt9v0zAQjtCQGGMv_AWReEFIGf7VOH4s1YBJFSAVnq2LfW7dJXGxE1X973GXoaEJ--FOd9_3nX13r4uLIQxYFG8pueFckY8x0QVlTMnmRXHJiGSVYIpd_OO_Kq5T2pN8OKeKiMvitBkneyrDUK5hsOVmapO3OBgsN76fOhh9Tn2ChPaMgeya--pHDAfYzrlvOEXoshmPId6Xq9C3fsjoox935bjLOgeIMRzLDUI0u3LZbUPMuf5N8dJBl_D60V4Vvz7f_lx9rdbfv9ytluvKCM7HSjWggFrRKgRE0lJBG6vy860UgltnFGe8lqQhUiBxuQGybmVdg7QUnSL8qribdW2AvT5E30M86QBePwRC3GqIozcd6obV4FRLBCgpDMHWWOvYQgl0ziCXWev9rHWI4feEadS9Twa7DgYMU9KcCCIWshY0Q989g-7DFIf8U80apppGcFFn1M2M2kKu7wcXxggmX4u9N3m8zuf4Ui6ahZQ1OcuSmWBiSCmi08aPD5PIRN9pSvR5F_TTLmTKh2eUv034D_gP9xy1Ug |
| CitedBy_id | crossref_primary_10_3390_s24154992 crossref_primary_10_1038_s41598_023_49579_z crossref_primary_10_3390_rs16152829 crossref_primary_10_1038_s41598_025_14712_7 crossref_primary_10_1109_JIOT_2024_3377440 |
| Cites_doi | 10.1016/j.scitotenv.2020.138595 10.1038/s41467-020-17038-2 10.1080/15481603.2019.1676973 10.1029/2020GL088676 10.1002/2014WR016841 10.1016/j.cej.2020.126673 10.1016/j.scitotenv.2018.03.244 10.1016/j.rse.2020.112254 10.1016/j.rse.2016.12.007 10.1016/j.rse.2013.08.038 10.1080/21642583.2019.1708830 10.1007/s10661-021-08962-x 10.1016/j.enggeo.2015.04.020 10.3390/rs10030365 10.1016/j.isatra.2021.04.004 10.1016/j.soildyn.2022.107433 10.3390/rs12244044 10.1155/2019/9389820 10.1016/j.enggeo.2018.08.014 10.1016/j.scitotenv.2020.139111 10.3390/rs14133142 10.1016/j.rse.2019.111357 10.1109/36.868878 10.1016/j.jhydrol.2021.126990 10.3390/rs10040494 10.3390/rs11101170 10.3390/rs10071006 10.1080/01431161.2016.1259674 10.1029/2019WR027026 10.1080/15481603.2017.1331511 10.1016/j.scitotenv.2018.11.104 10.1126/science.abb8549 10.1016/j.scitotenv.2021.149398 10.1016/j.geomorph.2019.03.017 10.1080/10106049.2021.1933211 10.1029/2020GL090970 10.1109/TGRS.2002.803792 10.26833/ijeg.882589 10.1016/j.asr.2018.11.008 10.1007/s11069-018-3431-8 10.26833/ijeg.976495 10.1016/j.scitotenv.2021.149244 10.3390/w12072051 10.3390/w14203197 10.3390/rs12030457 10.1016/j.habitatint.2020.102198 10.3390/rs14020291 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15122978 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_826af9b04a974c0ebcddf2594effce37 A758577601 10_3390_rs15122978 |
| GeographicLocations | China Beijing China Italy Mexico Iran Indonesia |
| GeographicLocations_xml | – name: China – name: Mexico – name: Iran – name: Indonesia – name: Beijing China – name: Italy |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c433t-98a9a1d4b9eaee0b1418d9331d7443dfc93236708074e0f51276b766a7d1ef903 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016128000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:35:33 EDT 2025 Wed Oct 01 15:00:02 EDT 2025 Fri Jul 25 11:57:41 EDT 2025 Tue Nov 04 18:15:10 EST 2025 Sat Nov 29 07:17:35 EST 2025 Tue Nov 18 21:36:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-98a9a1d4b9eaee0b1418d9331d7443dfc93236708074e0f51276b766a7d1ef903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2244-0034 0009-0000-8788-5371 |
| OpenAccessLink | https://www.proquest.com/docview/2829884346?pq-origsite=%requestingapplication% |
| PQID | 2829884346 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_826af9b04a974c0ebcddf2594effce37 proquest_miscellaneous_3040457641 proquest_journals_2829884346 gale_infotracacademiconefile_A758577601 crossref_citationtrail_10_3390_rs15122978 crossref_primary_10_3390_rs15122978 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Yastika (ref_7) 2019; 63 Chen (ref_24) 2016; 38 Ng (ref_20) 2012; 18 ref_14 Franceschini (ref_5) 2018; 245 ref_13 Li (ref_28) 2020; 382 Pourghasemi (ref_35) 2022; 37 Berardino (ref_42) 2002; 40 Gambolati (ref_3) 2015; 51 Zhu (ref_27) 2020; 56 Li (ref_38) 2019; 233 Li (ref_52) 2021; 799 Ferretti (ref_39) 2000; 38 Deng (ref_46) 2017; 54 ref_23 Li (ref_30) 2021; 405 Strozzi (ref_21) 2017; 190 Zhu (ref_1) 2015; 193 ref_29 Ezquerro (ref_9) 2021; 371 Cigna (ref_16) 2021; 254 Orhan (ref_43) 2021; 193 Corbau (ref_6) 2019; 654 (ref_37) 2023; 8 ref_33 Zhu (ref_48) 2022; 162 Li (ref_51) 2020; 101 Xue (ref_36) 2020; 8 Zhou (ref_26) 2019; 335 Arabameri (ref_34) 2020; 726 Tosi (ref_11) 2018; 633 Guo (ref_19) 2020; 47 Park (ref_41) 2021; 48 Duysak (ref_45) 2022; 7 Du (ref_18) 2021; 603 Hu (ref_12) 2019; 2019 Taravatrooy (ref_32) 2018; 94 Zehra (ref_31) 2022; 121 Foroughnia (ref_15) 2019; 74 ref_47 Jasechko (ref_22) 2020; 11 ref_44 ref_40 Chaussard (ref_10) 2014; 140 ref_2 ref_49 Suquet (ref_53) 2021; 799 ref_8 ref_4 Lyu (ref_25) 2020; 57 Chen (ref_17) 2020; 735 |
| References_xml | – volume: 726 start-page: 138595 year: 2020 ident: ref_34 article-title: A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138595 – volume: 74 start-page: 248 year: 2019 ident: ref_15 article-title: An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 3229 year: 2020 ident: ref_22 article-title: Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion publication-title: Nat. Commun. doi: 10.1038/s41467-020-17038-2 – volume: 57 start-page: 140 year: 2020 ident: ref_25 article-title: Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1676973 – volume: 47 start-page: e2020GL088676 year: 2020 ident: ref_19 article-title: Understanding Uneven Land Subsidence in Beijing, China, Using a Novel Combination of Geophysical Prospecting and InSAR publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL088676 – volume: 51 start-page: 3922 year: 2015 ident: ref_3 article-title: Geomechanics of subsurface water withdrawal and injection publication-title: Water Resour. Res. doi: 10.1002/2014WR016841 – volume: 405 start-page: 126673 year: 2021 ident: ref_30 article-title: Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126673 – volume: 633 start-page: 752 year: 2018 ident: ref_11 article-title: Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992-2010 results from SAR-based interferometry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.244 – volume: 254 start-page: 112254 year: 2021 ident: ref_16 article-title: Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112254 – volume: 190 start-page: 1 year: 2017 ident: ref_21 article-title: Widespread surface subsidence measured with satellite SAR interferometry in the Swiss alpine range associated with the construction of the Gotthard Base Tunnel publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.007 – volume: 140 start-page: 94 year: 2014 ident: ref_10 article-title: Land subsidence in central Mexico detected by ALOS InSAR time-series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.038 – volume: 8 start-page: 22 year: 2020 ident: ref_36 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 193 start-page: 174 year: 2021 ident: ref_43 article-title: Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-021-08962-x – volume: 193 start-page: 243 year: 2015 ident: ref_1 article-title: Land subsidence due to groundwater withdrawal in the northern Beijing plain, China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.04.020 – ident: ref_14 doi: 10.3390/rs10030365 – volume: 121 start-page: 217 year: 2022 ident: ref_31 article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.04.004 – volume: 162 start-page: 107433 year: 2022 ident: ref_48 article-title: Train-induced vibration and subsidence prediction of the permafrost subgrade along the Qinghai-Tibet Railway publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2022.107433 – volume: 18 start-page: 232 year: 2012 ident: ref_20 article-title: Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_33 doi: 10.3390/rs12244044 – volume: 2019 start-page: 9389820 year: 2019 ident: ref_12 article-title: Using multisensor SAR datasets to monitor land subsidence in Los Angeles from 2003 to 2017 publication-title: J. Sens. doi: 10.1155/2019/9389820 – volume: 245 start-page: 192 year: 2018 ident: ref_5 article-title: Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.08.014 – volume: 735 start-page: 139111 year: 2020 ident: ref_17 article-title: Land subsidence and its relation with groundwater aquifers in Beijing Plain of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139111 – ident: ref_23 doi: 10.3390/rs14133142 – volume: 233 start-page: 111357 year: 2019 ident: ref_38 article-title: Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111357 – volume: 38 start-page: 2202 year: 2000 ident: ref_39 article-title: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868878 – volume: 603 start-page: 126990 year: 2021 ident: ref_18 article-title: Analysis of the impact of the South-to-North water diversion project on water balance and land subsidence in Beijing, China between 2007 and 2020 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126990 – ident: ref_4 doi: 10.3390/rs10040494 – ident: ref_2 doi: 10.3390/rs11101170 – ident: ref_47 doi: 10.3390/rs10071006 – volume: 38 start-page: 808 year: 2016 ident: ref_24 article-title: Characterization and causes of land subsidence in Beijing, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1259674 – volume: 56 start-page: e2019WR027026 year: 2020 ident: ref_27 article-title: The 3-D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing publication-title: Water Resour. Res. doi: 10.1029/2019WR027026 – volume: 54 start-page: 797 year: 2017 ident: ref_46 article-title: Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2017.1331511 – volume: 654 start-page: 1196 year: 2019 ident: ref_6 article-title: Coupling land use evolution and subsidence in the Po Delta, Italy: Revising the past occurrence and prospecting the future management challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.104 – volume: 371 start-page: 34 year: 2021 ident: ref_9 article-title: Mapping the global threat of land subsidence publication-title: Science doi: 10.1126/science.abb8549 – ident: ref_40 – volume: 799 start-page: 149398 year: 2021 ident: ref_53 article-title: Assessing the effect of catchment characteristics to enhanced coagulation in drinking water treatment: RSM models and sensitivity analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149398 – volume: 335 start-page: 48 year: 2019 ident: ref_26 article-title: Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology publication-title: Geomorphology doi: 10.1016/j.geomorph.2019.03.017 – volume: 37 start-page: 6165 year: 2022 ident: ref_35 article-title: Comparison of statistical and machine learning approaches in land subsidence modelling publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1933211 – volume: 48 start-page: e2020GL090970 year: 2021 ident: ref_41 article-title: Nonlinear modeling of subsidence from a decade of InSAR time series publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090970 – ident: ref_44 – volume: 40 start-page: 2375 year: 2002 ident: ref_42 article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803792 – volume: 7 start-page: 81 year: 2022 ident: ref_45 article-title: Investigation of the performance of different wavelet-based fusions of SAR and optical images using Sentinel-1 and Sentinel-2 datasets publication-title: Int. J. Eng. Geosci. doi: 10.26833/ijeg.882589 – volume: 63 start-page: 1719 year: 2019 ident: ref_7 article-title: Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.11.008 – volume: 94 start-page: 905 year: 2018 ident: ref_32 article-title: A hybrid clustering-fusion methodology for land subsidence estimation publication-title: Nat. Hazards doi: 10.1007/s11069-018-3431-8 – volume: 8 start-page: 98 year: 2023 ident: ref_37 article-title: Investigation and modeling of physical development of urban areas and its effects on light pollution using night light data publication-title: Int. J. Eng. Geosci. doi: 10.26833/ijeg.976495 – ident: ref_50 – volume: 382 start-page: 505 year: 2020 ident: ref_28 article-title: Land subsidence modelling using a long short-term memory algorithm based on time-series datasets publication-title: Proc. Int. Assoc. Hydrol. Sci. – volume: 799 start-page: 149244 year: 2021 ident: ref_52 article-title: Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149244 – ident: ref_29 doi: 10.3390/w12072051 – ident: ref_13 doi: 10.3390/w14203197 – ident: ref_8 doi: 10.3390/rs12030457 – volume: 101 start-page: 102198 year: 2020 ident: ref_51 article-title: Evolution of rural settlements in the Tongzhou District of Beijing under the new-type urbanization policies publication-title: Habitat Int. doi: 10.1016/j.habitatint.2020.102198 – ident: ref_49 doi: 10.3390/rs14020291 |
| SSID | ssj0000331904 |
| Score | 2.377426 |
| Snippet | Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2978 |
| SubjectTerms | Accuracy Agricultural production Algorithms Artificial intelligence Back propagation Back propagation networks back-propagation neural network China Comparative analysis Compressibility Computer simulation Digital mapping Distribution Geology Google Earth Engine Groundwater Groundwater data Groundwater levels Infrared radiometers Interferometric synthetic aperture radar interferometry Internet Land subsidence Learning algorithms Machine learning Measurement multiscale Neural networks Optimization Passeriformes Radiometry Remote sensing Root-mean-square errors Search algorithms Sensitivity analysis Simulation Simulation models sparrow search algorithm Spatial analysis Spatial data Subsidence subsidence simulation Subsidences (Earth movements) Synthetic aperture radar Thickness time series analysis water table Weighting |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SBL2In7i1SkRBPAzNbF4nyXErFg9lKVSht5DPWmxny-y2sP9930um6x4UL96GyRsmeXmfkze_x9jHbEJnkj5oWhVCA1OQjQcnmtD6dABOKR0KZP6xms_12Zk52Wr1RTVhFR64Mm4fw1-XjRfgMPINIvkQY8aYHVLOIcnyH7lQZiuZKjZYomgJqHikEvP6_WFJvm1a-qlteaAC1P83c1x8zNFT9mQMDvmsTuoZe5D65-zR2Kf85_oFW1PZ35oven7s-shJ62tTUH56cTU24uKH6Jgi0Ti8DL-akwET4_M6Rlgc-IZ5Lf7maA0wM0Zq-hzLMRbkp9cFlZHXMmQ-uzxfDDh29ZL9OPr6_cu3Zmye0ASQctUY7YxrI3iTXErCt9DqaJAtUQHImAMGbgTeRmA4SWTkjeq86jqnYpuyEfIV2-kXfXrN-FS3ShKoTAaNtMa7zk1F9jI47_CxCft8z1AbRmRxanBxaTHDIObb38yfsA8b2uuKp_FHqkPalw0FYWCXGygZdpQM-y_JmLBPtKuWNBWnE9z4wwEuijCv7IxSJUU1QRO2d7_xdlThpaUjZq1BAq7v_WYYlY9OVFyfFjdLK9EEAmZs0O7-jxm_YY-pm32tRNtjO6vhJr1lD8Pt6mI5vCsSfgc6KAIk priority: 102 providerName: Directory of Open Access Journals |
| Title | Study on Land Subsidence Simulation Based on a Back-Propagation Neural Network Combined with the Sparrow Search Algorithm |
| URI | https://www.proquest.com/docview/2829884346 https://www.proquest.com/docview/3040457641 https://doaj.org/article/826af9b04a974c0ebcddf2594effce37 |
| Volume | 15 |
| WOSCitedRecordID | wos001016128000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgA8GFH2OIwKiMQEIcoiW1G8cn1KIOkEYVUZAGF8u_0k1sSUk6pF7423kvcTsOwIVLVNWvjRs_P_t7fv0-Ql6U0mbS56M4FdbGfMhZbLhOYpsaP-JaiNx2lPnHYjbLT05kERJubSir3MTELlC72mKO_BBP_PKcM569Xn6PUTUKT1eDhMZ1sotMZeDnu5PprPi4zbIkDFws4T0vKQN8f9i0uMYNO12131aijrD_b2G5W2uO7v5vL--RO2GXSce9W9wn13y1R24FwfPT9R65-bZT9F0_IGusJFzTuqLHunIUA0mvM0rnZxdB24tOYK1zaKPhpf0WFw1g7UXfhvQecK9ZX09OIcAA2AZrzPBS2F7S-bIjeqR9ZTMdny-gx6vTi33y-Wj66c27OOgxxJYztoplrqVOHTfSa-8Tk_I0dxKesBOcM1da2AsiHxzy6_ikhMcsMiOyTAuX-lIm7CHZqerKPyJ0mKeCIU9NyXOwlUZnepiUhlltNHwsIq82Y6NsICtHzYxzBaAFx1FdjWNEnm9tlz1Fxx-tJjjEWwuk1e7eqJuFCrNUAdbSpTQJ1wCzbOKNda4EgMh9WVrPREReooMonPzQHavDfxjgRyGNlhoj-hJYZhSRg42DqBAVWnXlHRF5tm2G-YyHNLry9WWrGERVDiCQp4___RVPyO0hbLj6srUDsrNqLv1TcsP-WJ21zSBMhEGXYxhgRescrz-ncC1GX6G9eP-h-PIL5HYYuQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFQuPAqIQIFFgBAHq2vv1vYeEEqB0qppFKlFak_LvtxWtHZIUlD-FL-RGdtJOQC3HrhZ8WRtb77MY3f8fQAvC-VSFfKNKM6ci2QiRWSl4ZGLbdiQJstyV1Pm97PBID88VMMl-Dl_F4baKuc-sXbUvnK0Rr5OO355LoVM342-RaQaRburcwmNBha7YfYDS7bJ250P-Pu-SpKtjwfvt6NWVSByUohppHKjTOylVcGEwG0s49xjWR_7TErhC4cZDbGaEUtM4AUGxCy1WZqazMehUFzguNdgWSLYeQeWhzt7w6PFqg7HcRSXDQ-qEIqvjycUU5Nax-23yFcLBPwtDNSxbev2_zYrd-BWm0WzXgP7u7AUylVYaQXdT2arcONTrVg8uwcz6pScsapkfVN6Ro6y0VFl-6fnrXYZ28RY7snG4KH7Gg3HFTra5hzRl-C1Bk2_PEMHajEz94xWsBmmz2x_VBNZsqZzm_XOjnGGpifn9-HzlczBA-iUVRkeAkvyOBPEw1PIHG2VNalJeGGFM9bg17rwZo4F7VoydtIEOdNYlBFu9CVuuvBiYTtqKEj-aLVJkFpYEG14_UE1PtatF9JYS5pCWS4NlpGOB-u8L7AAlqEoXBBZF14TIDU5N7wdZ9p3NPChiCZM96i6zKiNqgtrc0Dq1utN9CUau_B8cRr9FW1CmTJUFxMtMGpILHJl_OjfQzyDle2Dvb7u7wx2H8PNBJPLpkVvDTrT8UV4Atfd9-npZPy0_RMy-HLVCP8FIWJuFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VlNeFRwERKLAIEOJgxfZuvfYBoYQ2UDWKIkql3pbd9W5b0dohTkH5a_w6Zmwn5QDceuAW2eONs_k8j93x9wG89JlNMpduBZG0NhCx4IEROgxsZNyW0FKmtqbMH8nxOD08zCZr8HP5Lgy1VS59Yu2o89LSGnmPdvzSVHCR9HzbFjHZHr6bfgtIQYp2WpdyGg1E9tziB5Zv1dvdbfyvX8XxcOfz-49BqzAQWMH5PMhSnekoFyZz2rnQRCJKcyzxo1wKwXNvMbshhjNijHGhx-AoEyOTRMs8cj4LOY57BdYlx6KnA-uDnfHk02qFJ8RxslA0nKicZ2FvVlF8jWtNt9-iYC0W8LeQUMe54e3_eYbuwK02u2b95nG4C2uu2IAbrdD78WIDrn2olYwX92BBHZQLVhZspIuckQNt9FXZ_slZq2nGBhjjc7LR-NF-DSazEh1wc45oTfC7xk0fPUPHajBjzxmtbDNMq9n-tCa4ZE1HN-ufHuEMzY_P7sPBpczBA-gUZeEeAovTSHLi5_EiRdvM6ETHoTfcaqPxsi68WeJC2ZaknbRCThUWa4QhdYGhLrxY2U4bapI_Wg0IXisLohOvD5SzI9V6J4U1pvaZCYXG8tKGztg891gYC-e9dVx24TWBU5HTw9uxun13A38U0YepPlWdktqrurC5BKdqvWGlLpDZheer0-jHaHNKF648rxTHaCKw-BXRo38P8QyuI6zVaHe89xhuxphzNp17m9CZz87dE7hqv89PqtnT9nlk8OWyAf4L2Jl2sA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Land+Subsidence+Simulation+Based+on+a+Back-Propagation+Neural+Network+Combined+with+the+Sparrow+Search+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhu%2C+Xueqi&rft.au=Zhu%2C+Wantian&rft.au=Guo%2C+Lin&rft.au=Ke%2C+Yinghai&rft.date=2023-06-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=12&rft_id=info:doi/10.3390%2Frs15122978&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |