Study on Land Subsidence Simulation Based on a Back-Propagation Neural Network Combined with the Sparrow Search Algorithm

Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 12; s. 2978
Hlavní autoři: Zhu, Xueqi, Zhu, Wantian, Guo, Lin, Ke, Yinghai, Li, Xiaojuan, Zhu, Lin, Sun, Ying, Liu, Yaxuan, Chen, Beibei, Tian, Jinyan, Gong, Huili
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2023
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15122978