Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease

Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurology Ročník 72; číslo 5; s. 426
Hlavní autoři: Klöppel, S, Chu, C, Tan, G C, Draganski, B, Johnson, H, Paulsen, J S, Kienzle, W, Tabrizi, S J, Ashburner, J, Frackowiak, R S J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 03.02.2009
Témata:
ISSN:1526-632X, 1526-632X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms. Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age. Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%. Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.
AbstractList Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.BACKGROUNDTreatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.METHODSUsing the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.RESULTSSubjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.CONCLUSIONSPresymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.
Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms. Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age. Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%. Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.
Author Johnson, H
Frackowiak, R S J
Tan, G C
Chu, C
Draganski, B
Tabrizi, S J
Ashburner, J
Paulsen, J S
Klöppel, S
Kienzle, W
Author_xml – sequence: 1
  givenname: S
  surname: Klöppel
  fullname: Klöppel, S
  email: stefan.kloeppel@uniklinik-freiburg.de
  organization: Department of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Clinic Freiburg, Germany. stefan.kloeppel@uniklinik-freiburg.de
– sequence: 2
  givenname: C
  surname: Chu
  fullname: Chu, C
– sequence: 3
  givenname: G C
  surname: Tan
  fullname: Tan, G C
– sequence: 4
  givenname: B
  surname: Draganski
  fullname: Draganski, B
– sequence: 5
  givenname: H
  surname: Johnson
  fullname: Johnson, H
– sequence: 6
  givenname: J S
  surname: Paulsen
  fullname: Paulsen, J S
– sequence: 7
  givenname: W
  surname: Kienzle
  fullname: Kienzle, W
– sequence: 8
  givenname: S J
  surname: Tabrizi
  fullname: Tabrizi, S J
– sequence: 9
  givenname: J
  surname: Ashburner
  fullname: Ashburner, J
– sequence: 10
  givenname: R S J
  surname: Frackowiak
  fullname: Frackowiak, R S J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19188573$$D View this record in MEDLINE/PubMed
BookMark eNpNkFtLw0AQhRep2Iv-BQk--Ja49yS-laJWKPii6FvYy6SsJJuY3SD996ZYwXk5w8x3Dsws0cx3HhC6ITgjlNA7TLJv32R4KsZJLouMFpLLTMsztCCCylQy-jH718_RMoRPjKdBXl6gOSlJUYicLdD7eoxdq6IziYUIJrrOJ12d9AOYxnlnVJN4GIfOwh48DOoI3B_X4dD2f9bt6KPz-zh5rQugAlyi81o1Aa5OukJvjw-vm226e3l63qx3qeGMxVTg3NZSKlFrrrHBuSgU1pZrLXJhtDG1IQymoy1wprkRNeGWUV0KVdaMCbpCt7-5_dB9jRBi1bpgoGmUh24MlZRFQWXOJvD6BI66BVv1g2vVcKj-XkF_AEJ9Z9c
CitedBy_id crossref_primary_10_1007_s10897_010_9294_0
crossref_primary_10_1016_j_neuroimage_2010_02_018
crossref_primary_10_1007_s12021_014_9238_1
crossref_primary_10_1007_s13311_021_01023_8
crossref_primary_10_1007_s00406_016_0707_4
crossref_primary_10_1016_j_clinph_2018_09_006
crossref_primary_10_1371_journal_pcbi_1002079
crossref_primary_10_3390_jcm13237009
crossref_primary_10_1016_S1474_4422_11_70070_9
crossref_primary_10_1093_cercor_bhv154
crossref_primary_10_1016_j_neubiorev_2012_01_004
crossref_primary_10_21300_18_1_2016_5
crossref_primary_10_1093_schbul_sbu078
crossref_primary_10_1007_s00415_012_6475_9
crossref_primary_10_1093_schbul_sbs095
crossref_primary_10_1016_j_nicl_2018_11_003
crossref_primary_10_1016_j_nbd_2012_10_001
crossref_primary_10_1016_j_mri_2015_04_006
crossref_primary_10_1097_WCO_0b013e328332ba0f
crossref_primary_10_1016_j_neuroimage_2011_07_068
crossref_primary_10_1016_j_neuroimage_2011_11_066
crossref_primary_10_1147_JRD_2017_2648700
crossref_primary_10_1002_mds_25835
crossref_primary_10_1007_s11682_019_00138_z
crossref_primary_10_1016_j_neuroimage_2014_04_057
crossref_primary_10_1111_j_1399_0004_2012_01900_x
crossref_primary_10_1093_hmg_ddq063
crossref_primary_10_1016_j_nicl_2014_11_021
crossref_primary_10_3390_jpm12050704
crossref_primary_10_1016_j_jns_2011_09_035
crossref_primary_10_1093_brain_awq021
crossref_primary_10_1016_j_neuroscience_2009_01_045
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1097_WCO_0b013e32833bc59c
crossref_primary_10_1097_WCO_0b013e32834028c7
crossref_primary_10_1002_ajmg_b_31232
crossref_primary_10_1002_ana_25171
crossref_primary_10_1159_000339528
crossref_primary_10_1371_journal_pone_0069237
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1016_j_bbadis_2009_04_001
crossref_primary_10_1016_j_nicl_2015_09_015
crossref_primary_10_1093_cercor_bhs378
crossref_primary_10_1016_j_neubiorev_2013_01_022
crossref_primary_10_1093_brain_aws084
crossref_primary_10_1371_journal_pone_0047714
crossref_primary_10_2217_fnl_09_78
crossref_primary_10_3390_diagnostics13233592
crossref_primary_10_1016_j_nicl_2018_05_008
crossref_primary_10_1016_j_pscychresns_2013_09_009
crossref_primary_10_1016_j_neuroimage_2010_10_023
crossref_primary_10_1002_hbm_21161
crossref_primary_10_1016_j_pnpbp_2019_109837
crossref_primary_10_1016_j_neuroimage_2015_06_008
crossref_primary_10_1016_j_gaitpost_2011_04_011
crossref_primary_10_3389_fnins_2016_00014
crossref_primary_10_1017_S1355617716001132
crossref_primary_10_1016_j_neuroimage_2011_12_070
crossref_primary_10_1038_s41598_018_34269_y
crossref_primary_10_1016_j_neuroimage_2012_05_022
crossref_primary_10_1016_j_expneurol_2013_03_022
crossref_primary_10_1016_j_neuroimage_2011_11_002
crossref_primary_10_1016_j_neuroimage_2010_01_005
crossref_primary_10_1371_journal_pone_0154742
crossref_primary_10_5665_sleep_2638
crossref_primary_10_1007_s10309_012_0255_5
crossref_primary_10_1016_j_neuroimage_2010_04_273
ContentType Journal Article
CorporateAuthor PREDICT-HD Investigators of the Huntington Study Group
CorporateAuthor_xml – name: PREDICT-HD Investigators of the Huntington Study Group
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1212/01.wnl.0000341768.28646.b6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1526-632X
ExternalDocumentID 19188573
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040068
– fundername: Wellcome Trust
  grantid: 075696 2/04/2
– fundername: NCATS NIH HHS
  grantid: UL1 TR000442
– fundername: NINDS NIH HHS
  grantid: NS 40068
– fundername: NINDS NIH HHS
  grantid: R01 NS050568
GroupedDBID ---
-~X
.55
.XZ
.Z2
01R
0R~
123
1J1
29N
354
3PY
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
77Y
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAWTL
AAXQO
AAYEP
AAYOK
ABBLC
ABIVO
ABJNI
ABOCM
ABVCZ
ACCJW
ACDDN
ACGFS
ACIJW
ACILI
ACLDA
ACOAL
ACWRI
ACXJB
ADGGA
ADNKB
AE6
AEBDS
AENEX
AFDTB
AFEXH
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AJCLO
AKCTQ
AKULP
AKWKN
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FW0
GQDEL
HZ~
H~9
IKYAY
IN~
JF7
KD2
KMI
L-C
L7B
N9A
NEJ
NPM
N~7
N~B
O9-
OAG
OAH
OBH
ODMTH
OHH
OHYEH
OJAPA
OL1
OLB
OLH
OLU
OLV
OLW
OLY
OLZ
OPX
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
RHI
RLZ
RXW
SJN
TEORI
V2I
VVN
VXZ
W3M
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
XXN
XYM
XYN
YBU
YCJ
YFH
~9M
7X8
ABPXF
ABXYN
ABZZY
ACZKN
ADKSD
ADSXY
AFNMH
AHQVU
ID FETCH-LOGICAL-c433t-507df66a5fb4b0c0758a0bd4bb575cbccfc13e212de43b4c5f14d32b95a9f3352
IEDL.DBID 7X8
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263188200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-632X
IngestDate Thu Oct 02 06:13:22 EDT 2025
Wed Feb 19 01:44:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-507df66a5fb4b0c0758a0bd4bb575cbccfc13e212de43b4c5f14d32b95a9f3352
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19188573
PQID 66882673
PQPubID 23479
ParticipantIDs proquest_miscellaneous_66882673
pubmed_primary_19188573
PublicationCentury 2000
PublicationDate 2009-02-03
PublicationDateYYYYMMDD 2009-02-03
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurology
PublicationTitleAlternate Neurology
PublicationYear 2009
References 16769871 - Arch Neurol. 2006 Jun;63(6):883-90
18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97
11476837 - Lancet. 2001 Jul 21;358(9277):201-5
18202106 - Brain. 2008 Mar;131(Pt 3):681-9
15249612 - Neurology. 2004 Jul 13;63(1):66-72
15025718 - Clin Genet. 2004 Apr;65(4):267-77
16199141 - Psychiatry Res. 2005 Oct 30;140(1):55-62
17827035 - Neuroimage. 2007 Oct 15;38(1):13-24
16875847 - Neuroimage. 2006 Oct 1;32(4):1562-75
16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii
14980579 - Neuroimage. 2004 Feb;21(2):757-67
18056161 - Brain. 2008 Jan;131(Pt 1):196-204
10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
17045492 - Neuroimage. 2007 Jan 1;34(1):235-42
17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23
18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43
17166745 - Neuroimage. 2007 Feb 1;34(3):985-95
16157910 - Neurology. 2005 Sep 13;65(5):745-7
8684382 - Mov Disord. 1996 Mar;11(2):136-42
16755582 - Mov Disord. 2006 Sep;21(9):1317-25
9595616 - Stat Med. 1998 Apr 30;17(8):857-72
16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8
12135972 - Brain. 2002 Aug;125(Pt 8):1815-28
18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80
17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
9343609 - Neuroimage. 1995 Dec;2(4):244-52
14741641 - Neuroimage. 2004 Jan;21(1):46-57
References_xml – reference: 16875847 - Neuroimage. 2006 Oct 1;32(4):1562-75
– reference: 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii
– reference: 18056161 - Brain. 2008 Jan;131(Pt 1):196-204
– reference: 12135972 - Brain. 2002 Aug;125(Pt 8):1815-28
– reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9
– reference: 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42
– reference: 16199141 - Psychiatry Res. 2005 Oct 30;140(1):55-62
– reference: 15025718 - Clin Genet. 2004 Apr;65(4):267-77
– reference: 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97
– reference: 14741641 - Neuroimage. 2004 Jan;21(1):46-57
– reference: 16157910 - Neurology. 2005 Sep 13;65(5):745-7
– reference: 17827035 - Neuroimage. 2007 Oct 15;38(1):13-24
– reference: 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80
– reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
– reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
– reference: 16769871 - Arch Neurol. 2006 Jun;63(6):883-90
– reference: 17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23
– reference: 11476837 - Lancet. 2001 Jul 21;358(9277):201-5
– reference: 17166745 - Neuroimage. 2007 Feb 1;34(3):985-95
– reference: 9595616 - Stat Med. 1998 Apr 30;17(8):857-72
– reference: 14980579 - Neuroimage. 2004 Feb;21(2):757-67
– reference: 16755582 - Mov Disord. 2006 Sep;21(9):1317-25
– reference: 15249612 - Neurology. 2004 Jul 13;63(1):66-72
– reference: 9343609 - Neuroimage. 1995 Dec;2(4):244-52
– reference: 8684382 - Mov Disord. 1996 Mar;11(2):136-42
– reference: 18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43
– reference: 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8
SSID ssj0015279
Score 2.2713852
Snippet Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 426
SubjectTerms Adult
Age Distribution
Age of Onset
Aged
Automatic Data Processing - methods
Brain - pathology
Brain - physiopathology
Disease Progression
Early Diagnosis
Female
Genetic Testing
Heterozygote
Humans
Huntington Disease - diagnosis
Huntington Disease - physiopathology
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Middle Aged
Nerve Degeneration - diagnosis
Nerve Degeneration - physiopathology
Predictive Value of Tests
Young Adult
Title Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease
URI https://www.ncbi.nlm.nih.gov/pubmed/19188573
https://www.proquest.com/docview/66882673
Volume 72
WOSCitedRecordID wos000263188200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKRYiF96M8M7C6NLFjOwgJVYiqA606gMgWxY6NkCAJNAXx7zk7iZgQA0syxJai0-Xuc7677xA6hxyechYpLEUABxShOZaG-jgNuLT5TRjiGoXv-HQq4jiaddBV2wtjyyrbmOgCdVYo-4_8gjHAgoyT6_IN25lRllttBmgsoS4BIGMLunj8wyGEgVPagzvDjARxIzkKsfpi4Pc_8xenXQhRHBB3PxCMsr5kvwNNl3BGG_971U203gBNb1h7xhbq6HwbrU4aKn0HPQ4XVeH0Wr1MV64gK_cK45UQAptuSc-JXWb6yUlT2wWX9vH867Vst47rSRMAIL2G6tlFD6Pb-5sxbqYsYEUJqTAAwswwloZGUjlQACFEOpAZlRKQnJJKGeUTDVbLNCWSqtD4NCOBjMI0MrZjaw8t50WuD5BnlSqkgjURIZRKgD6E8SgTYSSVVTbtobPWYAl4saUm0lwXi3nSmqyH9mubJ2UttpHAeVKIkJPDP_ceobWa6gnwgByjroHvV5-gFfVRPc_fT51zwHU6m3wDj2vEnA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+preclinical+neurodegeneration%3A+presymptomatic+Huntington+disease&rft.jtitle=Neurology&rft.au=Kl%C3%B6ppel%2C+S&rft.au=Chu%2C+C&rft.au=Tan%2C+G+C&rft.au=Draganski%2C+B&rft.date=2009-02-03&rft.issn=1526-632X&rft.eissn=1526-632X&rft.volume=72&rft.issue=5&rft.spage=426&rft_id=info:doi/10.1212%2F01.wnl.0000341768.28646.b6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-632X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-632X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-632X&client=summon