Infrared Small-Target Detection Based on Background-Suppression Proximal Gradient and GPU Acceleration

Patch-based methods improve the performance of infrared small target detection, transforming the detection problem into a Low-Rank Sparse Decomposition (LRSD) problem. However, two challenges hinder the success of these methods: (1) The interference from strong edges of the background, and (2) the t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 22; s. 5424
Hlavní autori: Hao, Xuying, Liu, Xianyuan, Liu, Yujia, Cui, Yi, Lei, Tao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2023
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Patch-based methods improve the performance of infrared small target detection, transforming the detection problem into a Low-Rank Sparse Decomposition (LRSD) problem. However, two challenges hinder the success of these methods: (1) The interference from strong edges of the background, and (2) the time-consuming nature of solving the model. To tackle these two challenges, we propose a novel infrared small-target detection method using a Background-Suppression Proximal Gradient (BSPG) and GPU parallelism. We first propose a new continuation strategy to suppress the strong edges. This strategy enables the model to simultaneously consider heterogeneous components while dealing with low-rank backgrounds. Then, the Approximate Partial Singular Value Decomposition (APSVD) is presented to accelerate solution of the LRSD problem and further improve the solution accuracy. Finally, we implement our method on GPU using multi-threaded parallelism, in order to further enhance the computational efficiency of the model. The experimental results demonstrate that our method out-performs existing advanced methods, in terms of detection accuracy and execution time.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15225424